In this paper, we consider the numerical approximations of the Cahn-Hilliard phase field model for two-phase incompressible flows with variable density. First, a temporal semi-discrete numerical scheme is proposed by combining the fractional step method (for the momentum equation) and the convex-splitting method (for the free energy). Second, we prove that the scheme is unconditionally stable in energy. Then, the $ L^2 $ convergence rates for all variables are demonstrated through a series of rigorous error estimations. Finally, by applying the finite element method for spatial discretization, some numerical simulations were performed to demonstrate the convergence rates and energy dissipations.
Citation: Mingliang Liao, Danxia Wang, Chenhui Zhang, Hongen Jia. The error analysis for the Cahn-Hilliard phase field model of two-phase incompressible flows with variable density[J]. AIMS Mathematics, 2023, 8(12): 31158-31185. doi: 10.3934/math.20231595
In this paper, we consider the numerical approximations of the Cahn-Hilliard phase field model for two-phase incompressible flows with variable density. First, a temporal semi-discrete numerical scheme is proposed by combining the fractional step method (for the momentum equation) and the convex-splitting method (for the free energy). Second, we prove that the scheme is unconditionally stable in energy. Then, the $ L^2 $ convergence rates for all variables are demonstrated through a series of rigorous error estimations. Finally, by applying the finite element method for spatial discretization, some numerical simulations were performed to demonstrate the convergence rates and energy dissipations.
[1] | P. Yue, J. J Feng, C. Liu, J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515 (2004), 293–317. http://dx.doi.org/10.1017/S0022112004000370 doi: 10.1017/S0022112004000370 |
[2] | H. Ding, P. D. M. Spelt, C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226 (2007), 2078–2095. http://dx.doi.org/10.1016/j.jcp.2007.06.028 doi: 10.1016/j.jcp.2007.06.028 |
[3] | D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96–127. http://dx.doi.org/10.1006/jcph.1999.6332 doi: 10.1006/jcph.1999.6332 |
[4] | J. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A., 454 (1998), 2617–2654. http://dx.doi.org/10.1098/rspa.1998.0273 doi: 10.1098/rspa.1998.0273 |
[5] | C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179 (2003), 211–228. http://dx.doi.org/10.1016/S0167-2789(03)00030-7 doi: 10.1016/S0167-2789(03)00030-7 |
[6] | L. Rayleigh, On the theory of surface forces. Ⅱ. compressible fluids, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33 (1892), 209–220. http://dx.doi.org/10.1080/14786449208621456 doi: 10.1080/14786449208621456 |
[7] | J. S. Rowlinson, Translation of J. D. van der Waals' "The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density", J. Stat. Phys., 20 (1979), 197–200. http://dx.doi.org/10.1007/BF01011513 doi: 10.1007/BF01011513 |
[8] | J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. http://dx.doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[9] | J. Shen, X. Yang, Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows, SIAM J. Numer. Anal., 53 (2015), 279–296. http://dx.doi.org/10.1137/140971154 doi: 10.1137/140971154 |
[10] | J. Shen, X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32 (2010), 1159–1179. http://dx.doi.org/10.1137/09075860X doi: 10.1137/09075860X |
[11] | R. H. Nochetto, J. H. Pyo, The gauge-uzawa finite element method. part Ⅰ: The Navier-Stokes equations, SIAM J. Numer. Anal., 43 (2005), 1043–1068. http://dx.doi.org/10.1137/040609756 doi: 10.1137/040609756 |
[12] | J. L. Guermond, L. Quartapelle, A projection FEM for variable density incompressible flows, J. Comput. Phys., 165 (2000), 167–188. http://dx.doi.org/10.1006/jcph.2000.6609 doi: 10.1006/jcph.2000.6609 |
[13] | H. Li, L. Ju, C. Zhang, Q. Peng, Unconditionally energy stable linear schemes for the diffuse interface model with Peng-Robinson equation of state, J. Sci. Comput., 75 (2018), 993–1015. http://dx.doi.org/10.1007/s10915-017-0576-7 doi: 10.1007/s10915-017-0576-7 |
[14] | Z. Yang, S. Dong, An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices, J. Comput. Phys., 393 (2019), 229–257. http://dx.doi.org/10.1016/j.jcp.2019.05.018 doi: 10.1016/j.jcp.2019.05.018 |
[15] | J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Cont. Dyn. A, 28 (2010), 1669–1691. http://dx.doi.org/10.3934/dcds.2010.28.1669 doi: 10.3934/dcds.2010.28.1669 |
[16] | J. Shen, X. Yang, Decoupled energy stable schemes for phase-field models of two-phase complex fluids, SIAM J. Sci. Comput., 36 (2014), 122–145. http://dx.doi.org/10.1137/130921593 doi: 10.1137/130921593 |
[17] | S. M. Wise, C. Wang, J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), 2269–2288. http://dx.doi.org/10.1137/080738143 doi: 10.1137/080738143 |
[18] | D. Han, X. Wang, A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, J. Comput. Phys., 290 (2015), 139–156. http://dx.doi.org/10.1016/j.jcp.2015.02.046 doi: 10.1016/j.jcp.2015.02.046 |
[19] | Y. Gao, D. Han, X. He, U. Rüde, Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities, J. Comput. Phys., 454 (2022), 110968. http://dx.doi.org/10.1016/j.jcp.2022.110968 doi: 10.1016/j.jcp.2022.110968 |
[20] | C. Chen, X. Yang, Efficient numerical scheme for a dendritic solidification phase field model with melt convection, J. Comput. Phys., 388 (2019), 41–62. http://dx.doi.org/10.1016/j.jcp.2019.03.017 doi: 10.1016/j.jcp.2019.03.017 |
[21] | X. Yang, H. Yu, Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach, SIAM J. Sci. Comput., 40 (2018), 889–914. http://dx.doi.org/10.1137/17M1125005 doi: 10.1137/17M1125005 |
[22] | Z. Yang, S. Dong, An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices, J. Comput. Phys., 393 (2019), 229–257. http://dx.doi.org/10.1016/j.jcp.2019.05.018 doi: 10.1016/j.jcp.2019.05.018 |
[23] | X. Wang, L. Ju, Q. Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models, J. Comput. Phys., 316 (2016), 21–38. http://dx.doi.org/10.1016/j.jcp.2016.04.004 doi: 10.1016/j.jcp.2016.04.004 |
[24] | Y. Yan, W. Chen, C. Wang, S. M. Wise, A second-order energy stable bdf numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23 (2018), 572–602. http://dx.doi.org/10.4208/cicp.OA-2016-0197 doi: 10.4208/cicp.OA-2016-0197 |
[25] | P. C. Hohenberg, B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435. http://dx.doi.org/10.1103/RevModPhys.49.435 doi: 10.1103/RevModPhys.49.435 |
[26] | M. E. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Mod. Meth. Appl. S., 6 (1996), 815–831. http://dx.doi.org/10.1142/S0218202596000341 doi: 10.1142/S0218202596000341 |
[27] | Y. Chen, J. Shen, Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models, J. Comput. Phys., 308 (2016), 40–56. http://dx.doi.org/10.1016/j.jcp.2015.12.006 doi: 10.1016/j.jcp.2015.12.006 |
[28] | D. Han, X. Wang, A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, J. Comput. Phys., 290 (2015), 139–156. http://dx.doi.org/10.1016/j.jcp.2015.02.046 doi: 10.1016/j.jcp.2015.02.046 |
[29] | J. Shen, X. Yang, Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chin. Ann. Math. Ser. B, 31 (2010), 743–758. http://dx.doi.org/10.1007/s11401-010-0599-y doi: 10.1007/s11401-010-0599-y |
[30] | Z. Yang, S. Dong, An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices, J. Comput. Phys., 393 (2019), 229–257. http://dx.doi.org/10.1016/j.jcp.2019.05.018 doi: 10.1016/j.jcp.2019.05.018 |
[31] | Y. Gong, J. Zhao, X. Yang, Q. Wang, Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities, SIAM J. Sci. Comput., 40 (2018), 138–167. http://dx.doi.org/10.1137/17M1111759 doi: 10.1137/17M1111759 |
[32] | F. Guillén-González, G. Tierra, Splitting schemes for a Navier-Stokes-Cahn-Hilliard model for two fluids with different densities, J. Comp. Math., 32 (2014), 643–664. http://dx.doi.org/10.4208/jcm.1405-m4410 doi: 10.4208/jcm.1405-m4410 |
[33] | Q. Ye, Z, Ouyang, C, Chen, X. Yang, Efficient decoupled second-order numerical scheme for the flow-coupled Cahn-Hilliard phase-field model of two-phase flows, J. Comput. Appl. Math., 405 (2022), 113875. http://dx.doi.org/10.1016/j.cam.2021.113875 doi: 10.1016/j.cam.2021.113875 |
[34] | R. An, Error analysis of a new fractional-step method for the incompressible Navier-Stokes equations with variable density, J. Sci. Comput., 84 (2020), 3. http://dx.doi.org/10.1007/s10915-020-01253-6 doi: 10.1007/s10915-020-01253-6 |
[35] | J. L. Guermond, A. Salgado, A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228 (2009), 2834–2846. http://dx.doi.org/10.1016/j.jcp.2008.12.036 doi: 10.1016/j.jcp.2008.12.036 |