In this paper, we study a sufficient condition for subelliptic estimates in the weak $ \operatorname{Z}(k) $ domain with $ \operatorname{\operatorname{C}}^{3} $ boundary in an $ n $-dimentionsl $ \operatorname{Stein\, manifold} $ $ \operatorname{X} $. Consequently, the compactness of the $ \overline\partial $-Neumann operator $ \operatorname{N} $ on $ { M } $ is obtained and the closedness ranges of $ \overline\partial $ and $ \overline\partial^* $ are presented. The $ \operatorname{L}^2 $-setting and the Sobolev estimates of $ \operatorname{N} $ on $ { M } $ are proved. We study the $ \overline\partial $ problem with support conditions in $ { M } $ for $ \Xi $-valued $ (\operatorname{p}, \operatorname{k}) $ forms, where $ \Xi $ is the $ m $-times tensor product of holomorphic line bundle $ \Xi^{\otimes \operatorname{m}} $ for positive integer $ m $. Moreover, the compactness of the weighted $ \overline\partial $-Neumann operator is studied on an annular domain in a $ \operatorname{Stein\, manifold} $ $ { M } = { M }_{1}\backslash\overline{ M }_{2} $, between two smooth bounded domains $ { M }_{1} $ and $ { M }_{2} $ satisfy $ \overline{ M }_{2}\Subset{ M }_{1} $, $ { M }_{1} $ is weak $ Z(k) $, $ { M }_{2} $ is weak $ Z(n-1-k) $, $ 1 \leqslant k\leqslant n -2 $ with $ n \geqslant 3 $. In all cases, the closedness of $ \overline\partial $ and $ \overline\partial^* $, global boundary regularity for $ \overline\partial $ and $ \overline\partial_b $ are studied.
Citation: Haroun Doud Soliman Adam, Khalid Ibrahim Adam, Sayed Saber, Ghulam Farid. Existence theorems for the dbar equation and Sobolev estimates on $ q $-convex domains[J]. AIMS Mathematics, 2023, 8(12): 31141-31157. doi: 10.3934/math.20231594
In this paper, we study a sufficient condition for subelliptic estimates in the weak $ \operatorname{Z}(k) $ domain with $ \operatorname{\operatorname{C}}^{3} $ boundary in an $ n $-dimentionsl $ \operatorname{Stein\, manifold} $ $ \operatorname{X} $. Consequently, the compactness of the $ \overline\partial $-Neumann operator $ \operatorname{N} $ on $ { M } $ is obtained and the closedness ranges of $ \overline\partial $ and $ \overline\partial^* $ are presented. The $ \operatorname{L}^2 $-setting and the Sobolev estimates of $ \operatorname{N} $ on $ { M } $ are proved. We study the $ \overline\partial $ problem with support conditions in $ { M } $ for $ \Xi $-valued $ (\operatorname{p}, \operatorname{k}) $ forms, where $ \Xi $ is the $ m $-times tensor product of holomorphic line bundle $ \Xi^{\otimes \operatorname{m}} $ for positive integer $ m $. Moreover, the compactness of the weighted $ \overline\partial $-Neumann operator is studied on an annular domain in a $ \operatorname{Stein\, manifold} $ $ { M } = { M }_{1}\backslash\overline{ M }_{2} $, between two smooth bounded domains $ { M }_{1} $ and $ { M }_{2} $ satisfy $ \overline{ M }_{2}\Subset{ M }_{1} $, $ { M }_{1} $ is weak $ Z(k) $, $ { M }_{2} $ is weak $ Z(n-1-k) $, $ 1 \leqslant k\leqslant n -2 $ with $ n \geqslant 3 $. In all cases, the closedness of $ \overline\partial $ and $ \overline\partial^* $, global boundary regularity for $ \overline\partial $ and $ \overline\partial_b $ are studied.
[1] | D. Catlin, Necessary conditions for subellipticity and hypoellipticity for the d-Neumann problem on pseudoconvex domains, In: Recent Developments in Several Complex Variables, Princeton Univ. Press, Princeton, N.J., 1981. https://doi.org/10.1515/9781400881543-007 |
[2] | A. K. Herbig, A sufficient condition for subellipticity of the $\overline{\partial}$-Neumann operator, J. Funct. Anal., 242 (2007), 337–362. https://doi.org/10.1016/j.jfa.2005.08.013 doi: 10.1016/j.jfa.2005.08.013 |
[3] | L. Hörmander, $\operatorname{L}^{2}$-estimates and existence theorems for the $\overline\partial$-operator, Acta Math., 113 (1965), 89–152. https://doi.org/10.1007/BF02391775 doi: 10.1007/BF02391775 |
[4] | G. B. Folland, J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. Math. Studies, Princeton Univ. Press, Princeton, N.J., 75 (1972). |
[5] | J. J. Kohn, Subellipticity of the d-Neumann problem on pseudoconvex domains, sufficient conditions, Acta Math., 142 (1979), 79–122. https://doi.org/10.1007/BF02395058 doi: 10.1007/BF02395058 |
[6] | D. Catlin, Global regularity of the $\overline\partial$-Neumann problem, Proc. Symp. Pure Math., 41 (1984), 39–49. |
[7] | D. Catlin, Subelliptic estimates for the $\overline\partial$-Neumann problem on pseudoconvex domains, Ann. Math., 126 (1987), 131–191. https://doi.org/10.2307/1971347 doi: 10.2307/1971347 |
[8] | J. D. McNeal, A sufficient condition for compactness of the $\overline{\partial}$-Neumann operator, J. Funct. Anal., 195 (2002), 190–205. https://doi.org/10.1006/jfan.2002.3958 doi: 10.1006/jfan.2002.3958 |
[9] | T. V. Khanh, G. Zampieri, Subellipticity of the $\bar\partial$-Neumann problem on a weakly $q$-pseudoconvex/concave domain, Adv. Math., 228 (2011), 1938–1965. https://doi.org/10.48550/arXiv.0804.3112 doi: 10.48550/arXiv.0804.3112 |
[10] | T. V. Khanh, G. Zampieri, Compactness estimate for the $\overline{\partial}$-Neumann problem on a Q-pseudoconvex domain, Complex Var. Elliptic, 57 (2012), 1325–1337. https://doi.org/10.1080/17476933.2010.551196 doi: 10.1080/17476933.2010.551196 |
[11] | S. Saber, Global boundary regularity for the $\overline{\partial}$-problem on strictly q-convex and q-concave domains, Complex Anal. Oper. Th., 6 (2012), 1157–1165. https://doi.org/10.1007/s11785-010-0114-1 doi: 10.1007/s11785-010-0114-1 |
[12] | S. Saber, The $\overline{\partial}$ problem on q-pseudoconvex domains with applications, Math. Slovaca, 63 (2013), 521–530. https://doi.org/10.2478/s12175-013-0115-4 doi: 10.2478/s12175-013-0115-4 |
[13] | S. Sambou, R$\acute{e}$solution du $\overline\partial$ pour les courants prolongeables d$\acute{e}$finis dans un anneau (French) Resolution of $\overline\partial$ for extendable currents defined in an annulus, Ann. Fac. Sci. Toulouse Math., 11 (2002), 105–129. Available from: https://afst.centre-mersenne.org/item/AFST-2002-6-11-1-105-0/. |
[14] | M. C. Shaw, Local existence theorems with estimates for $\overline\partial_{b}$ on weakly pseudo-convex CR manifolds, Math. Ann., 294 (1992), 677–700. https://doi.org/10.1007/BF01934348 doi: 10.1007/BF01934348 |
[15] | J. Cao, M. C. Shaw, L. Wang, Estimates for the $\overline\partial$-Neumann problem and nonexistence of $C^{2}$ Levi-flat hypersurfaces in $\operatorname{s}$, Math. Z., 248 (2004), 183–221. https://doi.org/10.1007/s00209-004-0661-0 doi: 10.1007/s00209-004-0661-0 |
[16] | M. Derridj, Regularité pour $\overline\partial$ dans quelques domaines faiblement pseudo-convexes, J. Differ. Geom., 13 (1978), 559–576. https://doi.org/10.4310/jdg/1214434708 doi: 10.4310/jdg/1214434708 |
[17] | O. Abdelkader, S. Saber, Solution to $\bar \partial $-equations with exact support on pseudo-convex manifolds, Int. J. Geom. Methods M., 4 (2007), 339–348. http://dx.doi.org/10.1142/S0219887807002090 doi: 10.1142/S0219887807002090 |
[18] | S. Saber, Solution to $\overline{\partial}$ problem with exact support and regularity for the $\overline{\partial}$-Neumann operator on weakly $q$-pseudoconvex domains, Int. J. Geom. Methods M., 7 (2010), 135–142. https://doi.org/10.1142/S0219887810003963 doi: 10.1142/S0219887810003963 |
[19] | S. Saber, The $\bar \partial $-Neumann operator on Lipschitz q-pseudoconvex domains, Czech. Math. J., 136 (2011), 721–731. http://dx.doi.org/10.1007/s10587-011-0021-210.1007/s10587-011-0021-2 doi: 10.1007/s10587-011-0021-210.1007/s10587-011-0021-2 |
[20] | S. Saber, Global boundary regularity for the $\bar \partial $-problem on strictly q-convex and q-concave domainss, Complex Anal. Oper. Th., 6 (2012), 1157–1165. http://dx.doi.org/10.1007/s11785-010-0114-110.1007/s11785-010-0114-1 doi: 10.1007/s11785-010-0114-110.1007/s11785-010-0114-1 |
[21] | S. Saber, The $\overline{\partial}$-problem on q-pseudoconvex domains with applications, Math. Slovaca, 63 (2013), 521–530. https://doi.org/10.2478/s12175-013-0115-4 doi: 10.2478/s12175-013-0115-4 |
[22] | S. Saber, The $L^2$ $\overline\partial$-Cauchy problem on weakly $q$-pseudoconvex domains in Stein manifolds, Czechoslovak Math. J., 65 (2015), 739–745. https://doi.org/10.1007/s10587-015-0205-2 doi: 10.1007/s10587-015-0205-2 |
[23] | S. Saber, The $L^2$ $\bar{\partial}$-Cauchy problem on pseudoconvex domains and applications, Asian-Eur. J. Math., 11 (2018), 1850025. https://doi.org/10.1142/S1793557118500250 doi: 10.1142/S1793557118500250 |
[24] | H. R. Cho, Global regularity of the $\overline{\partial}$-Neumann problem on an annulus between two pseudoconvex manifolds which satisfy property (P), Manuscripta Math., 90 (1996), 437–448. https://doi.org/10.1007/BF02568317 doi: 10.1007/BF02568317 |
[25] | M. C. Shaw, Global solvability and regularity for $\overline{\partial}$ on an annulus between two weakly pseudoconvex domains, T. Am. Math. Soc., 291 (1985), 255–267. https://doi.org/10.1090/S0002-9947-1985-0797058-3 doi: 10.1090/S0002-9947-1985-0797058-3 |
[26] | M. C. Shaw, Holder and $L^p$ estimates for $\overline\partial_b$ on weakly pseudo-convex boundaries in $C^2$, Math. Ann., 279 (1988), 635–652. https://doi.org/10.1007/BF01458533 doi: 10.1007/BF01458533 |
[27] | M. C. Shaw, The closed range property for $\overline{\partial}$ on domains with pseudoconcave boundary, In: Proceedings for the Fribourg conference, Trends in Mathematics, 2010,307–320. https://doi.org/10.1007/978-3-0346-0009-5-19 |
[28] | S. C. Chen, M. C. Shaw, Partial differential equations in several complex variables, Studies in Adv. Math., AMS and Int. Press, 19 (2001). |
[29] | S. Saber, Solution to $\overline\partial$ and $\overline\partial_{b}$ problem with smooth forms and currents on strictly q-convex domains, Int. J. Geom. Methods M., 9 (2012), 1220002. https://doi.org/10.1142/S0219887812200022 doi: 10.1142/S0219887812200022 |
[30] | S. Saber, The $\overline\partial$-problem with support conditions and pseudoconvexity of general order in Kahler manifolds, J. Korean Math. Soc., 53 (2016), 1211–1223. https://doi.org/10.4134/JKMS.j140768 doi: 10.4134/JKMS.j140768 |
[31] | S. Saber, Solution to $\overline{\partial}$-problem with support conditions in weakly q-convex domains, Commun. Korean Math. S., 33 (2018), 409–421. https://doi.org/10.4134/CKMS.c170022 doi: 10.4134/CKMS.c170022 |
[32] | S. Saber, Global solvability and regularity for $\bar{\partial}$-on an annulus between two weakly convex domains which satisfy property (P), Asian-Eur. J. Math., 12 (2019), 1950041. https://doi.org/10.1142/S1793557119500414 doi: 10.1142/S1793557119500414 |
[33] | S. Saber, Compactness of the complex Green operator in a Stein manifold, Univ. Politeh. Buchar. Sci.-Bull.-Ser.-Appl. Math. Phys., 81 (2019), 185–200. |
[34] | S. Saber, Compactness of the weighted dbar-Neumann operator and commutators of the Bergman projection with continuous functions, J. Geom. Phys., 138 (2019), 194–205. https://doi.org/10.1016/j.geomphys.2018.12.022 doi: 10.1016/j.geomphys.2018.12.022 |
[35] | S. Saber, The $\overline\partial$-Cauchy problem on weakly q-convex domains in $CP^n$, Kragujev. J. Math., 44 (2020), 581–591. https://doi.org/10.46793/KgJMat2004.581S doi: 10.46793/KgJMat2004.581S |
[36] | S. Saber, Global regularity of $\overline\partial$ on certain pseudoconvexity, Trans. Razmadze Math. Inst., 175 (2021), 417–427. |
[37] | S. Saber, $L^2$ estimates and existence theorems for $ \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domains, CR. Math., 358 (2020), 435–458. https://doi.org/10.5802/crmath.43 doi: 10.5802/crmath.43 |
[38] | H. D. S. Adam, K. I. A. Ahmed, S. Saber, M. Marin, Sobolev estimates for the $\overline\partial$ and the $\overline\partial$-Neumann operator on pseudoconvex manifolds, Mathematics, 11 (2023), 4138. https://doi.org/10.3390/math11194138 doi: 10.3390/math11194138 |
[39] | S. Saber, A. Alahmari, Compactness estimate for the $\overline{\partial}$-Neumann problem on a $Q$-pseudoconvex domain in a Stein manifold, Kragujev. J. Math., 47 (2023), 627–636. https://doi.org/10.46793/KgJMat2304.627S doi: 10.46793/KgJMat2304.627S |
[40] | S. M. Abo-Dahab, A. E. Abouelregal, M. Marin, Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam, Symmetry, 12 (2020), 1094. https://doi.org/10.3390/sym12071094 doi: 10.3390/sym12071094 |
[41] | M. I. A. Othman, M. Fekry, M. Marin, Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating, Struct. Eng. Mech., 73 (2020), 621–629. https://doi.org/10.12989/sem.2020.73.6.621 doi: 10.12989/sem.2020.73.6.621 |
[42] | P. S. Harrington, A. S. Raich, Closed range for $\bar{\partial }$ and $\bar{\partial }_b$ on bounded hypersurfaces in Stein manifolds, Ann. I. Fourier, 65 (2015), 1711–1754. https://doi.org/10.5802/aif.2972 doi: 10.5802/aif.2972 |
[43] | K. Takegoshi, Global regularity and spectra of Laplace-Beltrami operators on pseudoconvex domains, Publ. Res. Inst. Math. Sci., 19 (1983), 275–304. https://doi.org/10.2977/PRIMS/1195182988 doi: 10.2977/PRIMS/1195182988 |
[44] | J. J. Kohn, Global regularity for $\overline\partial$ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273–292. https://doi.org/10.2307/1996633 doi: 10.2307/1996633 |