Citation: Baishuai Zuo, Chuancun Yin. Stein’s lemma for truncated generalized skew-elliptical random vectors[J]. AIMS Mathematics, 2020, 5(4): 3423-3433. doi: 10.3934/math.2020221
[1] | Xueying Yu, Chuancun Yin . Some results on multivariate measures of elliptical and skew-elliptical distributions: higher-order moments, skewness and kurtosis. AIMS Mathematics, 2023, 8(3): 7346-7376. doi: 10.3934/math.2023370 |
[2] | Xueyan Li, Chuancun Yin . Some stochastic orderings of multivariate skew-normal random vectors. AIMS Mathematics, 2023, 8(10): 23427-23441. doi: 10.3934/math.20231190 |
[3] | Guangshuai Zhou, Chuancun Yin . Family of extended mean mixtures of multivariate normal distributions: Properties, inference and applications. AIMS Mathematics, 2022, 7(7): 12390-12414. doi: 10.3934/math.2022688 |
[4] | Emrah Altun, Mustafa Ç. Korkmaz, M. El-Morshedy, M. S. Eliwa . The extended gamma distribution with regression model and applications. AIMS Mathematics, 2021, 6(3): 2418-2439. doi: 10.3934/math.2021147 |
[5] | Xuesong Si, Chuanze Niu . On skew cyclic codes over $ M_{2}(\mathbb{F}_{2}) $. AIMS Mathematics, 2023, 8(10): 24434-24445. doi: 10.3934/math.20231246 |
[6] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[7] | Ahmed Z. Afify, Rehab Alsultan, Abdulaziz S. Alghamdi, Hisham A. Mahran . A new flexible Weibull distribution for modeling real-life data: Improved estimators, properties, and applications. AIMS Mathematics, 2025, 10(3): 5880-5927. doi: 10.3934/math.2025270 |
[8] | Yang Du, Weihu Cheng . Change point detection for a skew normal distribution based on the Q-function. AIMS Mathematics, 2024, 9(10): 28698-28721. doi: 10.3934/math.20241392 |
[9] | Lijie Zhou, Liucang Wu, Bin Yang . Estimation and diagnostic for single-index partially functional linear regression model with $ p $-order autoregressive skew-normal errors. AIMS Mathematics, 2025, 10(3): 7022-7066. doi: 10.3934/math.2025321 |
[10] | Ruijie Guan, Aidi Liu, Weihu Cheng . The generalized scale mixtures of asymmetric generalized normal distributions with application to stock data. AIMS Mathematics, 2024, 9(1): 1291-1322. doi: 10.3934/math.2024064 |
Stein [3] provide an expression E[h(X)(X−μ)] for normal random variable X, where h(x) is an almost differentiable function. Then a number of scholars have generalized the formula. For examples, Landsman [4], Landsman and Neˇslehovˊa [5], Landsman et al. [6] derive Stein's lemma for multivariate elliptical distributions. Adcock and Shutes [7], Adcock [8], Adcock et al. [2] derive Stein's lemma for multivariate skew distributions. Liu [9] use Stein's lemma derive the Siegel's formula, and Li [10], Landsman et al. [11] apply this lemma to study risk measures.
Recently, Shushi [1] provide Stein's lemma for truncated elliptical random vectors, and inspired by this, we shall generalize Stein's lemma for truncated generalized skew-elliptical distributions. As applications, we consider the conditional tail expectation (CTE) allocation, the lower-orthant CTE at probability level q, the upper-orthant CTE at probability level q, the truncated version of Wang's premium, the multivariate tail conditional expectation and the multivariate tail covariance matrix measures of Stein's lemma for generalized skew-elliptical random vectors.
The rest of the paper is organized as follows. Section 2 reviews the definitions and properties of the generalized skew-elliptical distributions. In Section 3, We provide two Stein's lemmas, one is Stein's lemma for truncated generalized skew-elliptical random vectors, the other is a special form of Stein's lemma for truncated generalized skew-elliptical random vectors. Several measures as applications in risk theory are given in Section 4. Conclusions are summarized in Section 5.
Let Y be an n-dimensional generalized skew-elliptical random vector, and denoted by Y∼GSEn(μ,Σ,gn,π(⋅)). If it's probability density function exists, the form will be (see Adcock et al. [2])
fY(y)=2√|Σ|gn{12(y−μ)TΣ−1(y−μ)}π(Σ−12(y−μ)),y∈Rn, | (2.1) |
where
fX(x):=1√|Σ|gn{12(x−μ)TΣ−1(x−μ)},x∈Rn, | (2.2) |
is the density of n-dimensional elliptical random vector X∼En(μ,Σ,gn). Here μ is an n×1 location vector, Σ is an n×n scale matrix, and gn(u), u≥0, is the density generator of X. π(x),x∈Rn, is called the skewing function satisfying π(−x)=1−π(x) and 0≤π(x)≤1. The characteristic function of X takes the form φX(t)=exp{itTμ}ψ(12tTΣt),t∈Rn, with function ψ(t):[0,∞)→R, called the characteristic generator (see Fang et al. [12]). We definite a cumulative generator ¯Gn(u). It takes the form (see Landsman et al. [11], Part 4 or Landsman [13])
¯Gn(u)=∫∞ugn(v)dv. | (2.3) |
In this section, consider a random vector Y∼GSEn(μ,Σ,gn,π(⋅)) with finite vector μ=(μ1,⋯,μn)T, positive defined matrix Σ=(σij)ni,j=1 and probability density function fY(y).
Let ϖ:Rm→R,1≤m≤n, be an almost differentiable function, and we write
∇ϖ(y(1))=(∂ϖ(y(1))∂y1,∂ϖ(y(1))∂y2,⋯,∂ϖ(y(1))∂yn)T. |
Let X∗∼En(μ,Σ,¯Gn) be an elliptical random vector with generator ¯Gn(u), whose the density function (if it exists)
fX∗(x)=−1ψ′(0)√|Σ|¯Gn{12(x−μ)TΣ−1(x−μ)},x∈Rn. | (3.1) |
Let Y∗∼GSEn(μ,Σ,¯Gn,π(⋅)) be a generalized skew-elliptical random vector.
Let's derive Stein's lemma for truncated generalized skew-elliptical random vectors below. Firstly, we define a subset D⊆Rn, which is a subset of all possible outcomes of Y∈Rn, and
ED[ϖ(Y)(Y−μ)]:=E[ϖ(Y)(Y−μ)|Y∈D]. |
Then partition Y=(Y(1)T,Y(2)T)T, where Y(1)=(Y1,Y2,⋯,Ym)T and Y(2)=(Ym+1,Ym+2,⋯,Yn)T. Furthermore, X=(X(1)T,X(2)T)T and μ=(μT(1),μT(2))T are similar partitions.
Theorem3.1. Let Y∼GSEn(μ,Σ,gn,π(⋅)) be an n-dimensional generalized skew-elliptical random vector with probability density function (2.1). The function ϖ satisfies ED[∥∇ϖ(Y(1)∗)∥]<∞, E[∥ϖ(Y(1)∗)∇1Y∗∈D∥]<∞ and ED[∥ϖ(X(1)∗)∇π(Σ−12(X∗−μ))∥]<∞, where ∥⋅∥ is the Euclidean norm on Rn. Furthermore, we suppose
lim|yk|→∞ϖ(A1,1y(1)+A1,2y(2)+μ(1))π(y)1y∈D¯Gn(12yTy)=0. | (3.2) |
Then
ED[ϖ(Y(1))(Y−μ)]=−ψ′(0)Pr(Y∈D){Pr(Y∗∈D)ΣED[∇ϖ(Y(1)∗)]+Σ12E[ϖ(Y(1)∗)∇1Y∗∈D]+2Pr(X∗∈D)ΣED[ϖ(X(1)∗)∇π(Σ−12(X∗−μ))]}, | (3.3) |
where ∇1Y∗∈D=(∂1Y∗∈D∂Y∗1,∂1Y∗∈D∂Y∗2,⋯,∂1Y∗∈D∂Y∗n)T, and 1 is the indicator function. In addition, ∇π(Σ−12(X∗−μ))=ddX∗π(Σ−12(X∗−μ)) and
Σ12=(A1,1A1,2A2,1A2,2). |
Proof. Using definition, we obtain
ED[ϖ(Y(1))(Y−μ)]=2|Σ|−12Pr(Y∈D)∫Dϖ(y(1))(y−μ)gn{12(y−μ)TΣ−1(y−μ)}π(Σ−12(y−μ))dy. |
Setting z=Σ−12(y−μ), we have
ED[ϖ(Y)(Y−μ)]=2Σ12Pr(Y∈D)∫Rnϖ(A1,1z(1)+A1,2z(2)+μ(1))π(z)1z∈Dzzgn{12zTz}dz=−2Σ12Pr(Y∈D)∫Rnϖ(A1,1z(1)+A1,2z(2)+μ(1))π(z)1z∈Dzd¯Gn{12zTz}=2Σ12Pr(Y∈D)∫Rn∇[ϖ(A1,1z(1)+A1,2z(2)+μ(1))π(z)1z∈Dz]¯Gn{12zTz}dz, |
where Pr(Z∈DZ)=Pr(Y∈D), and in the third equality we have used (3.2).
While
∇[ϖ(A1,1z(1)+A1,2z(2)+μ(1))π(z)1z∈Dz]=π(z)1z∈Dz∇ϖ(A1,1z(1)+A1,2z(2)+μ(1))+ϖ(A1,1z(1)+A1,2z(2)+μ(1))1z∈Dz∇π(z)+ϖ(A1,1z(1)+A1,2z(2)+μ(1))π(z)∇1z∈Dz, |
so that
ED[ϖ(Y(1))(Y−μ)]=2Σ12Pr(Y∈D)∫Rn[π(z)1z∈Dz∇ϖ(A1,1z(1)+A1,2z(2)+μ(1))+ϖ(A1,1z(1)+A1,2z(2)+μ(1))1z∈Dz∇π(z)+ϖ(A1,1z(1)+A1,2z(2)+μ(1))π(z)∇1z∈Dz]¯Gn{12zTz}dz=2Σ12Pr(Y∈D)√|Σ|∫Rn[π(Σ−12(y−μ))1y∈DΣ12∇ϖ(y(1))+ϖ(y(1))1y∈DΣ12∇π(Σ−12(y−μ))+ϖ(y(1))π(Σ−12(y−μ))∇1y∈D]¯Gn{12(y−μ)TΣ−1(y−μ)}dy, |
therefore we obtain (3.3), which completes the proof of Theorem 3.1.
As a special case, Stein's lemma for n-dimensional truncated generalized skew-normal distribution is shown as follows.
Corollary3.1. Let Y∼GSNn(μ,Σ,π(⋅)) be an n-dimensional generalized skew-normal random vector with probability density function
fY(y)=2√|Σ|(2π)n2exp{−12(y−μ)TΣ−1(y−μ)}π(γTΣ−12(y−μ)),y∈Rn, |
where γ=(γ1,γ2,⋯,γn)T and function π(⋅):R→R. Then
ED[ϖ(Y(1))(Y−μ)]=ΣED[∇ϖ(Y(1))]+Σ12Pr(Y∈D)E[ϖ(Y(1))∇1Y∈D]+2Σ12γED[ϖ(X(1))π′(γTΣ−12(X−μ))], | (3.4) |
where X∼Nn(μ,Σ), and π′(⋅) is the derivative of π(⋅).
Proof. Let gn(u)=(2π)−n2exp{−u} and π(Σ−12(y−μ))=π(γTΣ−12(y−μ)) in Theorem 3.1. Due to gn(u)=¯Gn(u)=(2π)−n2exp{−u}, so that we obtain (3.4). This completes the proof of Corollary 3.1.
Remark3.1. Let π(⋅)=Φ(⋅)(the cdf of a standard normal distribution) in Corollary 3.1, we obtain Stein's lemma for n-dimensional truncated skew-normal distribution as follows.
ED[ϖ(Y(1))(Y−μ)]=ΣED[∇ϖ(Y(1))]+Σ12Pr(Y∈D)E[ϖ(Y(1))∇1Y∈D]+√2πΣ12γED[ϖ(X(1))exp{−12(γTΣ−12(X−μ))2}]. |
Remark3.2. In Loperfido [14], a trivariate distribution with the following pdf was introduced:
f(y1,y2,y3)=2ϕ(y1)ϕ(y2)ϕ(y3)Φ(ay1y2y3), |
where ϕ(⋅) and Φ(⋅) are pdf and the cdf of the standard normal distribution, respectively. Moreover, a is a nonnull real value. The conditional distribution of Y1 given that Y2=y2 and Y3=y3 is skew-normal with pdf
f(y1|Y2=y2,Y3=y3)=2ϕ(y1)Φ(cy1), |
where c=ay2y3 is a real value. Stein's lemma for this distribution can be obtained from Remark 3.1.
The following theorem gives a special form of Stein's lemma for truncated generalized skew-elliptical random vectors.
Theorem3.2. Let Y∼GSEn(μ,Σ,gn,π(⋅)) be an n-dimensional generalized skew-elliptical random vector with probability density function (2.1). The function ϖ satisfies ED[∥∇ϖ(Y∗)∥]<∞, E[∥ϖ(Y∗)∇1Y∗∈D∥]<∞ and ED[∥ϖ(X∗)∇π(Σ−12(X∗−μ))∥]<∞, where ∥⋅∥ is the Euclidean norm on Rn. Furthermore, we suppose
lim|yk|→∞ϖ(μ+Σ12y)π(y)1y∈D¯Gn(12yTy)=0. | (3.5) |
Then
ED[ϖ(Y)(Y−μ)]=−ψ′(0)Pr(Y∈D){Pr(Y∗∈D)ΣED[∇ϖ(Y∗)]+Σ12E[ϖ(Y∗)∇1Y∗∈D]+2Pr(X∗∈D)ΣED[ϖ(X∗)∇π(Σ−12(X∗−μ))]}. | (3.6) |
Proof. Let ϖ(y(1))=ϖ(y) in Theorem 3.1, we obtain (3.6), which completes the proof of Theorem 3.2.
Remark3.3. Let π(⋅)=12 in Theorem 3.2, we obtain
ED[ϖ(Y)(Y−μ)]=−ψ′(0)Pr(Y∈D){Pr(Y∗∈D)ΣED[∇ϖ(Y∗)]+Σ12E[ϖ(Y∗)∇1Y∗∈D]}, |
which is an equivalent form of Theorem 1 in Shushi [1].
Let SX denote the agammaegate or portfolio risk SX=X1+X2+⋯+Xn, the risk allocation for the conditional tail expectation (CTE) is a rule that decomposes the CTE of SX to each Xi such that E[SX|SX>sp]=∑nj=1ρ(Xj|Ω), where ρ(Xj|Ω) stands for the allocated risk to the jth line, and Ω={X1,X2,Xn} represents the whole portfolio. Since ρ(Xj|Ω)=E[Xj|SX>sp], so that (see Kim et al. [15])
E[SX|SX>sp]=n∑j=1E[Xj|SX>sp]. |
We now derive E[SY|SY>sp] for generalized skew-elliptical random vectors.
Theorem4.1. Consider Y∼GSEn(μ,Σ,gn,π(⋅)) is an n-dimensional generalized skew-elliptical random vector. Then the CTE allocation for SY is given by
E[SY|SY>sp]=eTμ−ψ′(0)Pr(SY>sp){eTΣ12E[∇1SY∗>sp]+2Pr(SX∗>sp)eTΣE[∇π(Σ−12(X∗−μ))|SX∗>sp]}, | (4.1) |
where SY=Y1+Y2+⋯+Yn, and e=(1,1,⋯,1)T is an n×1 vector whose elements are all equal to 1.
Proof. Let ϖ(Y)=1, and Y∈D subject to SY∗>sp in Theorem 3.2, we can obtain
E[Y|SY>sp]=μ−ψ′(0)Pr(SY>sp){Σ12E[∇1SY∗>sp]+2Pr(SX∗>sp)ΣE[∇π(Σ−12(X∗−μ))|SX∗>sp]}. | (4.2) |
Since E[SY|SY>sp]=eTE[Y|SY>sp], so we can get formula (4.1). This completes the proof of Theorem 4.1.
In addition, we introduce two CTE measure as follows (see Cousin and Bernardino [16] or Shushi [1]).
The lower-orthant CTE at probability level q
MCTE_q(X)=E[X|F(X)≥q],q∈(0,1). |
The upper-orthant CTE at probability level q
¯MCTEq(X)=E[X|¯F(X)≤1−q],q∈(0,1). |
Here F is distribution function of X, and ¯F is survival function of X.
We now give lower-orthant CTE and upper-orthant CTE for generalized skew-elliptical random vectors.
Theorem4.2. Consider Y∼GSEn(μ,Σ,gn,π(⋅)) is an n-dimensional generalized skew-elliptical random vector. Then
MCTE_q(Y)=μ−ψ′(0)Pr(F(Y)≥q){Σ12E[∇1F(Y∗)≥q]+2Pr(F(X∗)≥q)ΣE[∇π(Σ−12(X∗−μ))|F(X∗)≥q]}, | (4.3) |
¯MCTEq(Y)=μ−ψ′(0)Pr(¯F(Y)≤1−q){Σ12E[∇1¯F(Y∗)≤1−q]+2Pr(¯F(X∗)≤1−q)ΣE[∇π(Σ−12(X∗−μ))|¯F(X∗)≤1−q]}. | (4.4) |
Proof. Let ϖ(Y)=1, and Y∈D subject to F(Y)≥q in Theorem 3.2, we directly obtain (4.3). Let ϖ(Y)=1, and Y∈D submit to ¯F(Y)≤1−q in Theorem 3.2, we get (4.4). This completes the proof of Theorem 4.2.
The truncated version of Wang's premium can be defined, as follows (see Shushi [1]):
πq,λ(Xi,X)=E[Xiexp{λTX}|F(X)≥q]E[exp{λTX}|F(X)≥q],λi≥0, |
with the tuned exponential tilting exp{λTX} and λ=(λ1,λ2,⋯,λn)T∈Rn, q∈(0,1), where moment generating function is exists, i.e.,
E[exp{λTX}]<∞. | (4.5) |
We now derive πq,λ(Y) for generalized skew-elliptical random vectors.
Theorem4.3. Consider Y∼GSEn(μ,Σ,gn,π(⋅)) is an n-dimensional generalized skew-elliptical random vector, and satisfying formula (4.5). Then
πq,λ(Y)=μ−ψ′(0)Pr(F(Y)≥q){Pr(F(Y∗)≥q)Σζ+Σ12η+2Pr(F(X∗)≥q)Σξ}, | (4.6) |
where
ζ=E[λexp{λTY∗}|F(Y∗)≥q]E[exp{λTY}|F(Y)≥q],η=E[exp{λTY∗}∇1F(Y∗)≥q]E[exp{λTY}|F(Y)≥q],andξ=E[exp{λTX∗}∇π(Σ−12(X∗−μ))|F(X∗)≥q]E[exp{λTY}|F(Y)≥q]. |
Proof. Substituting ϖ(Y)=exp{λTY} into Theorem 3.2, we obtain
E[exp{λTY}(Y−μ)|F(Y)≥q]=−ψ′(0)Pr(F(Y)≥q){Pr(F(Y∗)≥q)⋅ΣE[λexp{λTY∗}|F(Y∗)≥q]+Σ12E[exp{λTY∗}∇1F(Y∗)≥q]+2Pr(F(X∗)≥q)ΣE[exp{λTX∗}∇π(Σ−12(X∗−μ))|F(X∗)≥q]}, |
so that
E[exp{λTY}Y|F(Y)≥q]=−ψ′(0)Pr(F(Y)≥q){Pr(F(Y∗)≥q)⋅ΣE[λexp{λTY∗}|F(Y∗)≥q]+Σ12E[exp{λTY∗}∇1F(Y∗)≥q]+2Pr(F(X∗)≥q)ΣE[exp{λTX∗}∇π(Σ−12(X∗−μ))|F(X∗)≥q]}+μE[exp{λTY}|F(Y)≥q]. |
Therefore we obtain (4.6), which completes the proof of Theorem 4.3.
Landsman et al. [11] defined the multivariate tail conditional expectation (MTCE) measure
MTCEq(Y)=E[Y|Y>VaRq(Y)]=E[Y|Y1>VaRq1(Y1),⋯,Yn>VaRqn(Yn)], |
where VaRq(Y)=(VaRq1(Y1),VaRq2(Y2),⋯,VaRqn(Yn))T, VaRqi(Yi)=yqi is the value at risk of Yi under the qi-th quantile, qi∈[0,1),i=1,2,⋯,n, and q=(q1,q2,⋯,qn). In addition, we define multivariate tail covariance matrix
MTCovq(Y)=E[(Y−MTCEq(Y))(Y−MTCEq(Y))T|Y>VaRq(Y)]. |
The following two theorems give MTCEq(Y) and MTCovq(Y), respectively.
Theorem4.4. Consider Y∼GSEn(μ,Σ,gn,π(⋅)) is an n-dimensional generalized skew-elliptical random vector. Then
MCTEq(Y)=μ−ψ′(0)Pr(Y>VaRq(Y)){Σ12E[∇1Y∗>VaRq(Y∗)]+2Pr(X∗>VaRq(X∗))ΣE[∇π(Σ−12(X∗−μ))|X∗>VaRq(X∗)]}. | (4.7) |
Proof. Let ϖ(Y)=1, and Y∈D subject to Y>VaRq(Y) in Theorem 3.2, we can obtain (4.7). This is completes proof of Theorem 4.4.
Theorem4.5. Consider Y∼GSEn(μ,Σ,gn,π(⋅)) is an n-dimensional generalized skew-elliptical random vector. Then
MTCovq(Y)=(ai,j)ni,j=1, | (4.8) |
where
ai,j=[μj−eTjMCTEq(Y)]eTiMCTEq(Y)−ψ′(0)Pr(Y>VaRq(Y)){Pr(Y∗>VaRq(Y∗))σi,j+eTjΣ12E[Y∗i∇1Y∗>VaRq(Y∗)]+2Pr(X∗>VaRq(X∗))eTjΣE[X∗i∇π(Σ−12(X∗−μ))|X∗>VaRq(X∗)]}, |
and ei=(0,⋯,0,1,0,⋯,0)T is an n×1 vector whose elements are all equal to zero except i-th element, which is equal to 1.
Proof. Let ϖ(Y)=Yi, and Y∈D subject to Y>VaRq(Y) in Theorem 3.2, we have
E[Yi(Y−μ)|Y>VaRq(Y)]=−ψ′(0)Pr(Y>VaRq(Y)){Pr(Y∗>VaRq(Y∗))Σei+Σ12E[Y∗i∇1Y∗>VaRq(Y∗)]+2Pr(X∗>VaRq(X∗))ΣE[X∗i∇π(Σ−12(X∗−μ))|X∗>VaRq(X∗)]}. |
Multiplying E[Yi(Y−μ)|Y>VaRq(Y)] by eTj from the left, we get
E[Yi(Yj−μj)|Y>VaRq(Y)]=−ψ′(0)Pr(Y>VaRq(Y)){Pr(Y∗>VaRq(Y∗))σi,j+eTjΣ12E[Y∗i∇1Y∗>VaRq(Y∗)]+2Pr(X∗>VaRq(X∗))eTjΣE[X∗i∇π(Σ−12(X∗−μ))|X∗>VaRq(X∗)]}. |
So that
E[YiYj|Y>VaRq(Y)]=μjE[Yi|Y>VaRq(Y)]−ψ′(0)Pr(Y>VaRq(Y)){Pr(Y∗>VaRq(Y∗))σi,j+eTjΣ12E[Y∗i∇1Y∗>VaRq(Y∗)]+2Pr(X∗>VaRq(X∗))eTjΣE[X∗i∇π(Σ−12(X∗−μ))|X∗>VaRq(X∗)]}=μjeTiMCTEq(Y)−ψ′(0)Pr(Y>VaRq(Y)){Pr(Y∗>VaRq(Y∗))σi,j+eTjΣ12E[Y∗i∇1Y∗>VaRq(Y∗)]+2Pr(X∗>VaRq(X∗))eTjΣE[X∗i∇π(Σ−12(X∗−μ))|X∗>VaRq(X∗)]}, | (4.9) |
where in the last line we have used the following relation
E[Yi|Y>VaRq(Y)]=eTiMCTEq(Y),i=1,2,⋯,n. | (4.10) |
While
ai,j=E[(Yi−pi)(Yj−pj)|Y>VaRq(Y)]=E[(Yi−eTiMCTEq(Y))(Yj−eTjMCTEq(Y))|Y>VaRq(Y)]=E[YiYj|Y>VaRq(Y)]−eTjMCTEq(Y)E[Yi|Y>VaRq(Y)]−eTiMCTEq(Y)E[Yj|Y>VaRq(Y)]+eTiMCTEq(Y)eTjMCTEq(Y)=E[YiYj|Y>VaRq(Y)]−eTjMCTEq(Y)eTiMCTEq(Y)−eTiMCTEq(Y)eTjMCTEq(Y)+eTiMCTEq(Y)eTjMCTEq(Y)=E[YiYj|Y>VaRq(Y)]−eTjMCTEq(Y)eTiMCTEq(Y), | (4.11) |
where MCTEq(Y)=p=(p1,p2,⋯,pn)T, pi=eTiMCTEq(Y),i=1,2,⋯,n, and in the fourth equality we have used (4.10).
Using relations (4.9) and (4.11), we obtain (4.8). This is completes proof of Theorem 4.5.
In this paper, we extended Stein's lemma in Shushi [1], deriving two Stein's lemmas for truncated generalized skew-elliptical random vectors. Moreover, as applications in risk theory, we obtained the expressions for the conditional tail expectation (CTE) allocation, the lower-orthant CTE at probability level q, the upper-orthant CTE at probability level q, the truncated version of Wang's premium, the multivariate tail conditional expectation and the multivariate tail covariance matrix measures. Our results also possibly apply to model of financial returns, for example, the multivariate SGARCH model proposed by De Luca, Genton and Loperfido [17] and further studied by De Luca and Loperfido [18]. We hope that these important problems can be addressed in future research.
The authors would like to thank two anomymous referees for their very useful comments which greatly helped in improving the quality of the present paper. The research was supported by the National Natural Science Foundation of China (No. 11171179, 11571198, 11701319).
The authors declare that they have no conflicts of interest.
[1] |
T. Shushi, Stein's lemma for truncated elliptical random vectors, Stat. Probabil. Lett., 137 (2018), 297-303. doi: 10.1016/j.spl.2018.02.008
![]() |
[2] | C. Adcock, Z. Landsman, T. Shushi, Stein's lemma for generalized skew-elliptical random vectors, Commun. Stat-Theor. M., 2019. |
[3] |
C. M. Stein, Estimation of the mean of a multivariate normal distribution, The Annals of Statistics, 9 (1981), 1135-1151. doi: 10.1214/aos/1176345632
![]() |
[4] |
Z. Landsman, On the generalization of Stein's lemma for elliptical class of distributions, Stat. Probabil. Lett., 76 (2006), 1012-1016. doi: 10.1016/j.spl.2005.11.004
![]() |
[5] |
Z. Landsman, J. Nešlehová, Stein's lemma for elliptical random vectors, J. Multivariate Anal., 99 (2008), 912-927. doi: 10.1016/j.jmva.2007.05.006
![]() |
[6] |
Z. Landsman, S. Vanduffel, J. Yao, A note on Stein's lemma for multivariate elliptical distributions, J. Stat. Plan. Infer., 143 (2013), 2016-2022. doi: 10.1016/j.jspi.2013.06.003
![]() |
[7] |
C. J. Adcock, K. Shutes, On the multivariate extended skew-normal, normal-exponential, and normal-gamma distributions, Journal of Statistical Theory and Practice, 6 (2012), 636-664. doi: 10.1080/15598608.2012.719799
![]() |
[8] |
C. J. Adcock, Mean-variance-skewness efficient surfaces, Stein's lemma and the multivariate extended skew-Student distribution, Eur. J. Oper. Res., 234 (2014), 392-401. doi: 10.1016/j.ejor.2013.07.011
![]() |
[9] |
J. S. Liu, Siegel's formula via Stein's identities, Stat. Probabil. Lett., 21 (1994), 247-251. doi: 10.1016/0167-7152(94)90121-X
![]() |
[10] |
K. C. Li, On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma, J. Am. Stat. Assoc., 87 (1992), 1025-1039. doi: 10.1080/01621459.1992.10476258
![]() |
[11] |
Z. Landsman, U. Makov, T. Shushi, A multivariate tail covariance measure for elliptical distributions, Insurance: Mathematics and Economics, 81 (2018), 27-35. doi: 10.1016/j.insmatheco.2018.04.002
![]() |
[12] | K. T. Fang, S. Kotz, K. W. Ng, Symmetric Multivariate and Related Distributions, CRC Press, New York, 1990. |
[13] |
Z. M. Landsman, E. A. Valdez, Tail conditional expectations for elliptical distributions, North American Actuarial Journal, 7 (2003), 55-71. doi: 10.1080/10920277.2003.10596118
![]() |
[14] |
N. Loperfido, Skewness-based projection pursuit: A computational approach, Comput. Stat. Data An., 120 (2018), 42-57. doi: 10.1016/j.csda.2017.11.001
![]() |
[15] |
J. H. T. Kim, S. Y. Kim, Tail risk measures and risk allocation for the class of multivariate normal mean-variance mixture distributions, Insurance: Mathematics and Economics, 86 (2019), 145-157. doi: 10.1016/j.insmatheco.2019.02.010
![]() |
[16] |
A. Cousin, E. D. Bernardino, On multivariate extensions of conditional-tail-expectation, Insurance: Mathematics and Economics, 55 (2014), 272-282. doi: 10.1016/j.insmatheco.2014.01.013
![]() |
[17] | G. De Luca, M. Genton, N. Loperfido, A multivariate skew-GARCH model, In: Econometric Analysis of Financial and Economic Time Series, Emerald Group Publishing Limited, Bingley, 2006, 33-57. |
[18] |
G. De Luca, N. Loperfido, Modelling multivariate skewness in financial returns: a SGARCH approach, The European Journal of Finance, 21 (2015), 1113-1131. doi: 10.1080/1351847X.2011.640342
![]() |
1. | Tatpon Siripraparat, Suporn Jongpreechaharn, The exponential non-uniform bound on the half-normal approximation for the number of returns to the origin, 2024, 9, 2473-6988, 19031, 10.3934/math.2024926 |