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Abstract: Inspired by Shushi [1] and Adcock et al. [2], we consider Stein’s lemma for truncated
generalized skew-elliptical random vectors. We provide two Stein’s lemmas. One is Stein’s lemma for
truncated generalized skew-elliptical random vectors, the other is a special form of Stein’s lemma
for truncated generalized skew-elliptical random vectors. Finally, the conditional tail expectation
allocation, the lower-orthant conditional tail expectation at probability level ¢, the upper-orthant
conditional tail expectation at probability level g, the truncated version of Wang’s premium, the
multivariate tail conditional expectation and the multivariate tail covariance matrix as applications
are given.
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1. Introduction and motivation

Stein [3] provide an expression E[A(X)(X — u)] for normal random variable X, where h(x) is an
almost differentiable function. Then a number of scholars have generalized the formula. For examples,
Landsman [4], Landsman and Neslehova [5], Landsman et al. [6] derive Stein’s lemma for multivariate
elliptical distributions. Adcock and Shutes [7], Adcock [8], Adcock et al. [2] derive Stein’s lemma for
multivariate skew distributions. Liu [9] use Stein’s lemma derive the Siegel’s formula, and Li [10],
Landsman et al. [11] apply this lemma to study risk measures.

Recently, Shushi [1] provide Stein’s lemma for truncated elliptical random vectors, and inspired by
this, we shall generalize Stein’s lemma for truncated generalized skew-elliptical distributions. As
applications, we consider the conditional tail expectation (CTE) allocation, the lower-orthant CTE at
probability level g, the upper-orthant CTE at probability level g, the truncated version of Wang’s
premium, the multivariate tail conditional expectation and the multivariate tail covariance matrix
measures of Stein’s lemma for generalized skew-elliptical random vectors.
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The rest of the paper is organized as follows. Section 2 reviews the definitions and properties of the
generalized skew-elliptical distributions. In Section 3, We provide two Stein’s lemmas, one is Stein’s
lemma for truncated generalized skew-elliptical random vectors, the other is a special form of Stein’s
lemma for truncated generalized skew-elliptical random vectors. Several measures as applications in
risk theory are given in Section 4. Conclusions are summarized in Section 5.

2. Generalized skew-elliptical distributions
Let Y be an n-dimensional generalized skew-elliptical random vector, and denoted by

Y ~GSE,(u, X, g,, n(-)). If it’s probability density function exists, the form will be (see Adcock et
al. [2])

2 1 |
1) = e {E(y -y —u)}ﬂ(2‘2@ -w), yeR, 2.1)
where
Felx) = —— {1<x S TE - )} xeR" 22)
X L mgn 2 I’l l‘l ’ ’ .

is the density of n-dimensional elliptical random vector X ~ E, (u, X, g,). Here g is an n X 1 location
vector, X is an n X n scale matrix, and g,(u), u > 0, is the density generator of X. m(x), x € R”, is
called the skewing function satisfying m(—x) = 1 — n(x) and 0 < n(x) < 1. The characteristic function
of X takes the form ¢x() = exp {itT/.l} W (%tTZt) , t € R", with function ¢(?) : [0, 0) — R, called the
characteristic generator (see Fang et al. [12]). We definite a cumulative generator G,(u). Tt takes the
form (see Landsman et al. [11], Part 4 or Landsman [13])

Gu(u) = f i gn(v)dv. (2.3)

3. Main results

In this section, consider a random vector Y ~ GSE,(u, X, g,, n(-)) with finite vector
w= (- 1), positive defined matrix X = (o j)i.j=1 and probability density function fy(y).
Letw : R" - R, 1 <m < n, be an almost differentiable function, and we write

dw(ya) dwlyw) aw(v(l)))T

Vw = 5 5"
Ow) ( dy; 0y» Oy,

Let X* ~ E,(u, X, G,) be an elliptical random vector with generator G,(u), whose the density
function (if it exists)

-1 = (1
()= ————G,{=-(x—-p)'Z ' x -}, x eR". 3.1
Jx(x) S OVE {2(x WX (x u)} X € (3.1)

LetY" ~GSE,(u, Z, G,, n() bea generalized skew-elliptical random vector.
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Let’s derive Stein’s lemma for truncated generalized skew-elliptical random vectors below. Firstly,
we define a subset D C R”, which is a subset of all possible outcomes of Y € R”, and

EP[@(Y)(Y - )] := E [@(Y)(Y - p)Y € D].

Then partition Y = (Yy', Y2,")7, where Y1) = (Y1, Yo, -+, Y,)" and Y2 = (Yyuu1s Yinsas oo, Vo).
Furthermore, X = (X", X")" and u = (uqa)’, ge)")" are similar partitions.

Theorem 3.1. Let Y ~ GSE,(u, X, g,, m(-)) be an n-dimensional generalized skew-elliptical random
vector with probability density function (2.1). The function @ satisfies E”[|| Va(Yq)") Il < oo,
E[ll @(Ya))V1yep ll] < oo and EP [|| @(Xa))Var (23 (X* — ) |I] < oo, where || - || is the Euclidean
norm on R". Furthermore, we suppose

1
‘yl}m @ (AL1ya + A2y + Hay) 7(0)LyenG, (2)’ J’) =0. (3.2)
k —00
Then
E°[@(Ya)(Y — )]
:ﬂ{ Pr(Y* € D)2E° [V (Ya))] + £ E[@(Y))V1y-co]
Pr(Y € D)
+2Pr(X" € DEZE® [w(Xo) )V (23X - )] } (3.3)
o1 o1 Myean |
where Vlyp = ( T ﬁ) , and 1 is the indicator function. In addition,
1 2 n

Vr (E74(X* - ) = g (75X - p)) and

1 A A )
X2 = ’ .
( Ari Agp

Proof. Using definition, we obtain
E°[@(Ya)(Y - p)]

21Xz 1
- oo [t w30 =020 - w b (z - ) oy

Setting z = Z‘%(y — W), we have

E°[@(Y)(Y - p)]

2% f (Av1z) + Avazay 4 i) 101 Lr )y
- w T ,
~ Pr(Y € D) 11z + Ar22) + H) 1Dl 280 ) 527 2 d2
) o
- Pr(Y € D) Jp @ (A11za) + A122@) + Hy) 7(2)1zep,dG, {5 7' z}
2% e
= —— V A +A —+ 1 Gn _ T d ,
Pr(Y €D) Ju [w( L1IZa) + A12ze) + H) T(z) zeDz] { ok z} Z
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where Pr(Z € Dz) = Pr(Y € D), and in the third equality we have used (3.2).

While
\% [w (Ar1zay + A2z + Ha)) ”(Z)lzeDz]
= 1(2)1ep, Vo (A1 120y + A1220) + Ha))
+ @ (A 1zay + A122@) + Hay) 1zep, V7(2)
+ @ (A1120) + A1220) + Hay) T(2)V1ep,,
so that

E°[@(Ya)(Y - p)]
2%

“Pr(Y €D) Js

+ @ (A11Za) + A1220) + L)) 1.cp, Vr(2)

[F(Z)lzeDzVW (Ar1zay + A2z + Ha))

— (1
+ w0 (A1,1Z(1) + A1,2Z(2) + [J(l)) ﬂ(Z)VlzeDz:IGn {EZTZ} dz

2%2 , 1
=== | |70 - w) 1,2V
Pr(Y € D) VIE[ Jrs [ﬂ( 0 =) Lo X V)

+ ()L Vr (273 - )
i — (1
+ @y (272 - w) wyeD]Gn {§<y =y - m} dy,

therefore we obtain (3.3), which completes the proof of Theorem 3.1.
As a special case, Stein’s lemma for n-dimensional truncated generalized skew-normal distribution
is shown as follows.

Corollary 3.1. Let Y ~ GS N, (u, X, n(-)) be an n-dimensional generalized skew-normal random vector
with probability density function

2 1 Ty -1 } Ty -1 n
- expl——(y-p)'E Ny - 2y —p), yeR",
K = o exp{ SO-W'E - (Y ER o -w). v e
where ¥ = (y1, v2, -, ¥»)! and function 7(-) : R — R. Then
)%
E°[@(Ya))(Y — )] = ZE°[Va(Ya)] + ME[W(Y(D)VIY@]
+ 28y EP [@(Xa)r' (Y272 (X - ). (3.4)

where X ~ N, (u, X), and n’(+) is the derivative of n(-).

Proof. Let g,(u) = (2m)~2 exp{—u} and H(Z‘%(y —y)) = n(yTZ‘%(y —u)) in Theorem 3.1. Due to
gn(u) = G,(u) = 2n)% exp{—u}, so that we obtain (3.4). This completes the proof of Corollary 3.1.
Remark 3.1. Let n(-) = ®(-)(the cdf of a standard normal distribution) in Corollary 3.1, we obtain
Stein’s lemma for n-dimensional truncated skew-normal distribution as follows.

1

E°[a(Yn)(Y - w)] = ZE°[Va(Ya)] + E[@(Y))Vlyen]

Pr(Y € D)
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2 1 1
+ \/;ZWED [W(X(l)) exp {—5 (7TZ‘§(X - ”))2}] :

Remark 3.2. In Loperfido [14], a trivariate distribution with the following pdf was introduced:

SO 2, ¥3) = 200019 (72)d(y3)P(ay1y2y3),

where ¢(-) and ®(-) are pdf and the cdf of the standard normal distribution, respectively. Moreover, a is
a nonnull real value. The conditional distribution of ¥; given that ¥, = y, and Y3 = y; is skew-normal
with pdf

FOulY2 = y2, Y3 = y3) = 2¢(y1)@(cy),

where ¢ = ay,y; is a real value. Stein’s lemma for this distribution can be obtained from Remark 3.1.
The following theorem gives a special form of Stein’s lemma for truncated generalized

skew-elliptical random vectors.

Theorem 3.2. Let Y ~ GSE,(u, X, g,, n(-)) be an n-dimensional generalized skew-elliptical random

vector with probability density function (2.1). The function @ satisfies E°[|| V& (Y*) ||| < oo,

E[|| m(Y")Vlye |l < o0 and E ||| @(X")Vx (E75(X* = ) [I| < oo, where || - || is the Euclidean

norm on R". Furthermore, we suppose

[ykl—o0 2

| — (1
lim w(u +X2 y)n(y)lyeDGn (—yTy) = 0. (3.5)
Then

E°[@(Y)(Y - )]
=)
" Pr(Y e D)

+2Pr(X" € DEE® [w(X)Vr (24X - )| } (3.6)

{Pr(Y* € DISEP[Var(YH)] + £} E[@(Y)V1y o]

Proof. Let w(y1y) = w(y) in Theorem 3.1, we obtain (3.6), which completes the proof of Theorem 3.2.
Remark 3.3. Let 7(-) = % in Theorem 3.2, we obtain

E°[@(Y)(Y - p)]

__—¥(0)

¥ < D) {Pr(Y* € D)ZEP [V (Y")] + 22 E[@(Y)V1y- o]},

which is an equivalent form of Theorem 1 in Shushi [1].
4. Applications in risk theory

Let Sx denote the aggregate or portfolio risk Sx = X; + X, + --- + X,,, the risk allocation for
the conditional tail expectation (CTE) is a rule that decomposes the CTE of Sx to each X; such that

E[SxISx > s,] = Z'}:l p(X;|€2), where p(X/[Q2) stands for the allocated risk to the jth line, and Q =
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{X1, X, X,} represents the whole portfolio. Since p(X;|Q2) = E[X;|Sx > s,], so that (see Kim et
al. [15])

E[SxISx > 5,1 = > E[XISx > 5]
J=1
We now derive E[Sy|Sy > s,] for generalized skew-elliptical random vectors.
Theorem 4.1. Consider Y ~ GSE,(u, X, g,, m(-)) is an n-dimensional generalized skew-elliptical
random vector. Then the CTE allocation for Sy is given by

¥'(0)

E[SyIS —e'p—- ————
[SylSy >s,] =€ p Pr(Sy > 5,)

{eT)JiE [VlSY*>Sp]
+2Pr(Sx- > 5,)e" BE|Vr (B2 -p)ISx > 5| } 4.1

where Sy =Y, +Y,+---+Y,,ande = (1, 1, ---, 1)T isan n X 1 vector whose elements are all equal
to 1.
Proof. Let w(Y) = 1, and Y € D subject to Sy- > s, in Theorem 3.2, we can obtain

¥’'(0)

E[YlSY > Sp] =M - m
p

{ztE (V15,0
+2Pr(Sx: > 5,)EE |Vx (E73(X" - ) ISx- > s, ] } (4.2)

Since E[SylSy > s,] = e’E[Y|Sy > sp1, so we can get formula (4.1). This completes the proof of
Theorem 4.1.

In addition, we introduce two CTE measure as follows (see Cousin and Bernardino [16] or
Shushi [1]).
The lower-orthant CTE at probability level g

MCTE (X) = E[X|F(X) > ¢ql, g € (0, 1).
The upper-orthant CTE at probability level g

MCTE,(X) = E[X|F(X) < 1-¢]. g € (0, D).

Here F is distribution function of X, and F is survival function of X.

We now give lower-orthant CTE and upper-orthant CTE for generalized skew-elliptical random
vectors.
Theorem 4.2. Consider Y ~ GSE,(u, X, g,, n(-)) is an n-dimensional generalized skew-elliptical
random vector. Then

MCTE (Y) = p ~ %{2515 [VlF(Y*m]
+2PH(F(X) > @R [V (24X - ) IFX) = g] } 4.3)
- (0 |
MCTE,(Y) =yt — Pr(ﬁ(;”)(s)l 2 {):zE V1721
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+2Pr(F(X") < 1 - )RE [Va (L 2(X" - ) [F(X") < 1 - g] } (4.4)

Proof. Let w(Y) = 1,and Y € ﬂg subject to F(Y) > ¢ in Theorem 3.2, we directly obtain (4.3). Let
@w(Y)=1,and Y € D submit to F(Y) < 1 — g in Theorem 3.2, we get (4.4). This completes the proof
of Theorem 4.2.

The truncated version of Wang’s premium can be defined, as follows (see Shushi [1]):

E [ X;exp ("X} |F(X) > 4]
E [exp (X} IF(X) > q|

ﬂq, /I(Xi’ X) =

i =Y

with the tuned exponential tilting exp {/ITX} and A = (1, A, -+, A,)T € R", g € (0, 1), where moment
generating function is exists, i.e.,

E [exp {ATX}] < oo. 4.5)

We now derive 7, 2(Y) for generalized skew-elliptical random vectors.
Theorem 4.3. Consider Y ~ GSE,(u, X, g,, m(-)) is an n-dimensional generalized skew-elliptical
random vector, and satisfying formula (4.5). Then

ﬂ'q, /I(Y)
¥’ (0)

" BFY) 59 [Pr(F(Y*) > @)X + B2n + 2Pr(F(X") > q)Eé} 4.6)

where
) E|dexp {A"Y*}IF(Y") 2 q ) E [exp {A"Y"} V1|
- E|exp{A'Y}IF(Y) 2 q| "= E [exp{X'Y}IF(Y) 2 |
E [exp ("X} Vrr (23X — i) IF(X") 2 q]
E [exp (ATY}IF(Y) > 4] '

and & =

Proof. Substituting w(Y) = exp {/ITY} into Theorem 3.2, we obtain

s A) .
" Pr(F(Y) > q){Pr(F(Y )2 4q)

‘LE [Aexp Y} [F(Y") 2 g| + Z2E [exp {4 Y} V1pyps,

E [exp (Y} (Y ~ wIF(Y) 2 q

+2Pr(F(X*) > ¢)LE [exp {/lTX*} Vr ():—%(X* - ) IF(X") 2 q] }

so that

A ) .
~ Pr(F(Y) > q){Pr(F(Y )2 4q)

(LE [Aexp XY} IF(Y") 2 g| + B2E [exp (7Y} Vg

E [exp {A"Y} YIF(Y) 2 q
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+2Pr(F(X") 2 @)LE [exp ("X} Vr (E72(X" - ) IF(X") 2 g }
+ HE [exp (XY} IF(Y) 2 q.

Therefore we obtain (4.6), which completes the proof of Theorem 4.3.
Landsman et al. [11] defined the multivariate tail conditional expectation (MTCE) measure

MTCE,(Y) = E[Y|Y > VaR,(Y)] = E[Y|Y; > VaR, (Y,), -+ , Y, > VaR, (Y,)],

where VaR,(Y) = (VaR, (Y1), VaR,,(Y,), -, Vaan(Y,,))T, VaR,(Y;) =y, is the value at risk of Y;
under the g;-th quantile, ¢; € [0, 1), i =1, 2,--- ,n,and ¢ = (q1, g2, ,q,)- In addition, we define
multivariate tail covariance matrix

MTCovy(Y) = E [(Y = MTCE(Y))(Y = MTCE4(Y))'|Y > VaR,(Y)].

The following two theorems give MTCE,(Y) and MT Cov,(Y), respectively.
Theorem 4.4. Consider Y ~ GSE,(u, X, g,, n(-)) is an n-dimensional generalized skew-elliptical
random vector. Then

o Y’ (0) 1
MCTE,(Y) = p Pr(Y > VaR,(Y)) {Z E [VIY*>VaRq<Y*>]
+2Pr(X* > VaR,(X)EE |V (E72(X" — ) [X* > VaR,(X")| } (4.7)

Proof. Let w(Y) = 1,and Y € D subject to Y > VaR,(Y) in Theorem 3.2, we can obtain (4.7). This is
completes proof of Theorem 4.4.

Theorem 4.5. Consider Y ~ GSE,(u, X, g,, m(-)) is an n-dimensional generalized skew-elliptical
random vector. Then

MTCovy(Y) = (a; )} ;1 (4.8)

where

a;; = |u; - €] MCTE,(Y)|e] MCTE,(Y)

¥’ (0) { ; ) Tk o [
- Pr(Y* > VaR,(Y")o;;+ e X2 E | Y V1y-syar, v
Pr(Y > VaR,(Y)) " AR )i+ e [ P VaRe(Y )]

+2Pr(X" > VaR,(X")eTZE | X; Vrr (272 (X" — ) [X" > VaR,(X")| }

and e; = (0,---,0, 1, 0,---,0)" is an n X 1 vector whose elements are all equal to zero except i-th

element, which is equal to 1.
Proof. Let w(Y) = Y;, and Y € D subject to Y > VaR,(Y) in Theorem 3.2, we have

E[Yi(Y — Y > VaR,(Y)]
_ —¥'(0)
" Pr(Y > VaR,(Y))

{PrOY" > VaR,(Y)Ze; + HE ¥, Vv vungovo)|
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+2Pr(X* > VaRy (X )EE [ X; Va (273X - ) X" > VaR,(X)] }
Multiplying E[Y;(Y — p)[Y > VaR,(Y)] by e]T from the left, we get

ELYi(Y; — upIY > VaR,(Y)]
_ ~¥'(0)
" Pr(Y > VaR,(Y))
+2Pr(X" > VaRy(X")eTZE [X; Va (E72(X" - 1)) X" > VaR,(X")] }

{Pr(Y* > VaR(Y)ory; + € ZHE [V Vv vuryve |

So that

ELY,Y,IY > VaR,(Y)] = ;E[Y[Y > VaR(Y)]
L)
Pr(Y > VaR,(Y))

+2Pr(X" > VaRy(X")el LE | X; Va (£72(X" - ) [X* > VaR,(X")] }

{Pr(Y* > VaR,(Y"))oj + e?ZﬁE [Yi*VIY*>VaRq(Y*)]

= uje] MCTE,(Y)
_ ¥'(0)
Pr(Y > VaR,(Y))

+2Pr(X* > VaRy(X")elLE [X; Va (£72 (X" - 1)) X > VaR,(X")] } (4.9)

{Pr(Y* > VaR,(Y"))o;; + ejT-Z%E [Yl-*le*>VaRq(Y*)]

where in the last line we have used the following relation
E[Y,)Y > VaR,(Y)] = e, MCTE,Y), i=1, 2,--- ,n. (4.10)
While

aij = E[(Yi = p)(Y; = p)IY > VaR,(Y)]
= E|(Yi - ¢/ MCTE,(Y)) (Y, - €] MCTE,(Y)) Y > VaRy(Y)]
= E[Y,Y))Y > VaR,(Y)| - el MCTE,(Y)E[Y|Y > VaR,(Y)]
—e] MCTE,(Y)ELY,|Y > VaR,(Y)] + e MCTE(Y)e; MCTE,(Y)
= E[Y,Y,|Y > VaR,(Y)] — €] MCTE,(Y)e] MCTE,(Y)
—e] MCTE(Y)e; MCTE,(Y) + e MCTE,(Y)e; MCTE,(Y)
= E[Y,Y,|Y > VaR,(Y)] — e] MCTE,(Y)e] MCTE,(Y), (4.11)
where MCTE,(Y) = p = (p1, p2,-+* o), pi = e[.TMCTEq(Y), i=1, 2,---,n, and in the fourth
equality we have used (4.10).
Using relations (4.9) and (4.11), we obtain (4.8). This is completes proof of Theorem 4.5.
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5. Conclusions

In this paper, we extended Stein’s lemma in Shushi [1], deriving two Stein’s lemmas for truncated
generalized skew-elliptical random vectors. Moreover, as applications in risk theory, we obtained the
expressions for the conditional tail expectation (CTE) allocation, the lower-orthant CTE at probability
level g, the upper-orthant CTE at probability level g, the truncated version of Wang’s premium, the
multivariate tail conditional expectation and the multivariate tail covariance matrix measures. Our
results also possibly apply to model of financial returns, for example, the multivariate SGARCH model
proposed by De Luca, Genton and Loperfido [17] and further studied by De Luca and Loperfido [18].
We hope that these important problems can be addressed in future research.
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