Research article Special Issues

Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator

  • Received: 21 September 2021 Accepted: 17 November 2021 Published: 29 November 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • The comprehension of inequalities in preinvexity is very important for studying fractional calculus and its effectiveness in many applied sciences. In this article, we develop and study of fractional integral inequalities whose second derivatives are preinvex functions. We investigate and prove new lemma for twice differentiable functions involving Riemann-Liouville(R-L) fractional integral operator. On the basis of this newly developed lemma, we make some new results regarding of this identity. These new results yield us some generalizations of the prior results. This study builds upon on a novel new auxiliary result which enables us to develop new variants of Ostrowski type inequalities for twice differentiable preinvex mappings. As an application, several estimates concerning Bessel functions of real numbers are also illustrated.

    Citation: Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Ather Qayyum. Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator[J]. AIMS Mathematics, 2022, 7(3): 3303-3320. doi: 10.3934/math.2022184

    Related Papers:

  • The comprehension of inequalities in preinvexity is very important for studying fractional calculus and its effectiveness in many applied sciences. In this article, we develop and study of fractional integral inequalities whose second derivatives are preinvex functions. We investigate and prove new lemma for twice differentiable functions involving Riemann-Liouville(R-L) fractional integral operator. On the basis of this newly developed lemma, we make some new results regarding of this identity. These new results yield us some generalizations of the prior results. This study builds upon on a novel new auxiliary result which enables us to develop new variants of Ostrowski type inequalities for twice differentiable preinvex mappings. As an application, several estimates concerning Bessel functions of real numbers are also illustrated.



    加载中


    [1] Y. Qin, Integral and discrete inequalities and their applications, Springer International Publishing Switzerland, Birkhauser Basel, (2016).
    [2] P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Springer Singapore, (2018). doi: 10.1007/978-981-13-3013-1.
    [3] T. Du, S. Wu, S. Zhao, M. U. Awan, Riemann-Liouville fractional Hermite-Hadamard inequalities for h-preinvex functions, J. Comput. Anal. Appl., 25 (2018).
    [4] T. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized $m$-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. doi: 10.1142/S0218348X19501172. doi: 10.1142/S0218348X19501172
    [5] S. Qaisar, J. Nasir, S. I. Butt, S. Hussain, On some fractional integral inequalities of Hermite-Hadamard type through convexity, Symmetry, 11 (2019), 137. doi: 10.3390/sym11020137. doi: 10.3390/sym11020137
    [6] S. I. Butt, J. Pečarić, A. Vukelić, Generalization of Popoviciu type inequalities Via Fink's identity, Mediterr. J. Math., 13 (2016), 1495–1511. doi: 10.1007/s00009-015-0573-8. doi: 10.1007/s00009-015-0573-8
    [7] N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen's inequality by Lidstone's polynomial with applications in Information Theory, J. Math. Inequal., 14 (2019), 249–271. doi: 10.7153/jmi-2020-14-17. doi: 10.7153/jmi-2020-14-17
    [8] D. S. Mitrinovic, J. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Sci. Bus. Media, 53 (1991). doi: 10.1007/978-94-011-3562-7-15.
    [9] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076.
    [10] M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll, 13 (2010).
    [11] E. Set, M. Z. Sarikaya, M. E. Özdemir, Some Ostrowski' s type inequalities for functions whose second derivatives are $s$-convex in the second sense, Demonstr. Math., 47 (2014), 37–47. doi: 10.2478/dema-2014-0003. doi: 10.2478/dema-2014-0003
    [12] D. S. Mitrinovic, J. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Sci. Bus. Media, 53 (1991). doi: 10.1007/978-94-011-3562-7-15.
    [13] A. Qayyum, I. Faye, M. Shoaib, On New Generalized Inequalities via Riemann-Liouville Fractional Integration, J. Fractional Calculus Appl., 6 (2015).
    [14] P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. doi: 10.1515/dema-2004-0208. doi: 10.1515/dema-2004-0208
    [15] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl., 1 (1998).
    [16] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591. doi: 10.1006/jmaa.2000.6913. doi: 10.1006/jmaa.2000.6913
    [17] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are $s$-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147–1154. doi: 10.1016/j.camwa.2011.12.023. doi: 10.1016/j.camwa.2011.12.023
    [18] E. Set, M. E. Ozdemir, M. Z. Sarikaya, New inequalities of Ostrowski's type for $s$-convex functions in the second sense with applications, Mathematics, (2012). doi: 10.1016/j.amc.2010.11.047.
    [19] İ. İşcan, Some new Hermite Hadamard type inequalities for geometrically convex functions, Math. Stat., 1 (2013), 86–91. doi: 10.13189/ms.2013.010211. doi: 10.13189/ms.2013.010211
    [20] T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60 (2005), 1473–1484. doi: 10.1016/j.na.2004.11.005. doi: 10.1016/j.na.2004.11.005
    [21] S. K. Mishra, G. Giorgi, Invexity and Optimization, Springer-Verlag, Berlin, (2008). doi: 10.1007/978-3-540-78562-0.
    [22] S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057. doi: 10.1006/jmaa.1995.1057
    [23] M. A. Noor, Hadamard integral inequalities for product of two preinvex function, Nonl. Anal. Forum, 14 (2009), 167–173.
    [24] X. M. Yang, D. Li, On properties of preinvex functions, J. Math. Anal. Appl., 256 (2001), 229–241. doi: 10.1006/jmaa.2000.7310. doi: 10.1006/jmaa.2000.7310
    [25] A. Barani, G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 1 (2012), 247. doi: 10.1006/jmaa.2000.7310. doi: 10.1006/jmaa.2000.7310
    [26] R. Pini, Invexity and generalized convexity, Optimization, 22 (1991), 513–525. doi: 10.1080/02331939108843693. doi: 10.1080/02331939108843693
    [27] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. doi: 10.1080/02331939108843693. doi: 10.1080/02331939108843693
    [28] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131.
    [29] L. Chun, F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, J. Inequal. Appl., 1 (2013), 1–10. doi: 10.1186/1029-242X-2013-451. doi: 10.1186/1029-242X-2013-451
    [30] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite Hadamard 's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048
    [31] I. Podlubni, Fractional differential equations, Academic press, San Diego (1999).
    [32] P. Cerone, S. S. Dragomir, J. Roumeliotis, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, East Asian Math. J., 15 (1999), 1–9.
    [33] H. Kadakal, On refinements of some integral inequalities using improved power-mean integral inequalities, Numer. Meth. Part. D. E., 36 (2020), 1555–1565. doi: 10.1002/num.22491. doi: 10.1002/num.22491
    [34] İ. İşcan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 1 (2019), 1–11. doi: 10.1186/s13660-019-2258-5. doi: 10.1186/s13660-019-2258-5
    [35] H. Budak, M. Z. Sarikaya, A. Qayyum, New refinements and applications of Ostrowski type inequalities for mappings whose nth derivatives are of bounded variation, TWMS J. App. Eng. Math., 11 (2021), 424–435 .
    [36] H. Budak, E. Pehlivan, Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals, AIMS Math., 5 (2020), 1960–1984. doi: 10.3934/math.2020131. doi: 10.3934/math.2020131
    [37] S. Erden, H. Budak, M. Z. Sarikaya, Fractional Ostrowski type inequalities for functions of bounded variaton with two variables, Miskolc Math. Notes, 21 (2020), 171–188. doi: 10.18514/MMN.2020.3076. doi: 10.18514/MMN.2020.3076
    [38] S. Erden, H. Budak, M. Z. Sarikaya, S. Iftikhar, P. Kumam, Fractional Ostrowski type inequalities for bounded functions, Inequal. Appl., 1 (2020), 1–11. doi: 10.1186/s13660-020-02381-1. doi: 10.1186/s13660-020-02381-1
    [39] M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. doi: 10.1515/math-2021-0020. doi: 10.1515/math-2021-0020
    [40] T. Sitthiwirattham, M. A. Ali, H. Budak, M. Abbas, S. Chasreechai, Montgomery identity and Ostrowski-type inequalities via quantum calculus, Open Math., 19 (2021), 1098–1109. doi: 10.1515/math-2021-0088. doi: 10.1515/math-2021-0088
    [41] T. Sitthiwirattham, H. Budak, H. Kara, M. A. Ali, J. Reunsumrit, On Some New Fractional Ostrowski and Trapezoid-type inequalities for functions of bounded variations with two variables, Symmetry, 13 (2021), 1724. doi: 10.3390/sym13091724. doi: 10.3390/sym13091724
    [42] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press (1995).
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1778) PDF downloads(96) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog