Research article Special Issues

Fuzzy cosets in AG-groups

  • Received: 05 August 2021 Accepted: 24 November 2021 Published: 30 November 2021
  • MSC : 08A72, 17A30

  • In this paper, the notion of fuzzy AG-subgroups is further extended to introduce fuzzy cosets in AG-groups. It is worth mentioning that if $ A $ is any fuzzy AG-subgroup of $ G $, then $ \mu_{A}(xy) = \mu_{A}(yx) $ for all $ x, \, y\in G $, i.e. in AG-groups each fuzzy left coset is a fuzzy right coset and vice versa. Also, fuzzy coset in AG-groups could be empty contrary to fuzzy coset in group theory. However, the order of the nonempty fuzzy coset is the same as the index number $ [G:A] $. Moreover, the notions of fuzzy quotient AG-subgroup, fuzzy AG-subgroup of the quotient (factor) AG-subgroup, fuzzy homomorphism of AG-group and fuzzy Lagrange's theorem of finite AG-group is also introduced.

    Citation: Aman Ullah, Muhammad Ibrahim, Tareq Saeed. Fuzzy cosets in AG-groups[J]. AIMS Mathematics, 2022, 7(3): 3321-3344. doi: 10.3934/math.2022185

    Related Papers:

  • In this paper, the notion of fuzzy AG-subgroups is further extended to introduce fuzzy cosets in AG-groups. It is worth mentioning that if $ A $ is any fuzzy AG-subgroup of $ G $, then $ \mu_{A}(xy) = \mu_{A}(yx) $ for all $ x, \, y\in G $, i.e. in AG-groups each fuzzy left coset is a fuzzy right coset and vice versa. Also, fuzzy coset in AG-groups could be empty contrary to fuzzy coset in group theory. However, the order of the nonempty fuzzy coset is the same as the index number $ [G:A] $. Moreover, the notions of fuzzy quotient AG-subgroup, fuzzy AG-subgroup of the quotient (factor) AG-subgroup, fuzzy homomorphism of AG-group and fuzzy Lagrange's theorem of finite AG-group is also introduced.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X.
    [2] A. Rosenfeld, Fuzzy group, J. Math. Anal. Appl., 35 (1971), 512–517.
    [3] J. M. Anthony, H. Sherwood, Fuzzy subgroups redefined, J. Math. Anal. Appl., 69 (1979), 124–130. doi: 10.1016/0022-247X(79)90182-3.
    [4] J. M. Anthony, H. Sherwood, A characterization of fuzzy subgroups, J. Math. Anal. Appl., 69 (1979), 297–305. doi: 10.1016/S0022-5320(79)90118-7. doi: 10.1016/S0022-5320(79)90118-7
    [5] N. P. Mukherjee, P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inf. Sci., 34 (1984), 225–239. doi: 10.1016/0020-0255(84)90050-1. doi: 10.1016/0020-0255(84)90050-1
    [6] P. Bhattacharya, N. P. Mukherjee, Fuzzy groups and fuzzy relations, Inf. Sci., 36 (1985), 267–282. doi: 10.1016/0020-0255(85)90057-X. doi: 10.1016/0020-0255(85)90057-X
    [7] P. Bhattacharya, Fuzzy subgroups: Some characterizations. II, Inf. Sci., 38 (1986), 293–297. doi: 10.1016/0020-0255(86)90028-9. doi: 10.1016/0020-0255(86)90028-9
    [8] P. Bhattacharya, Fuzzy subgroups: Some characterization, J. Math. Anal. Appl., 128 (1987), 241–252. doi: 10.1016/0022-247X(87)90228-9. doi: 10.1016/0022-247X(87)90228-9
    [9] P. Bhattacharya, N. P. Mukherjee, Fuzzy groups: Some group theoretic analogs. II, Inf. Sci., 41 (1987), 77–91. doi: 10.1016/0020-0255(87)90006-5. doi: 10.1016/0020-0255(87)90006-5
    [10] W. Wu, Normal fuzzy subgroups, Fuzzy Math., 1 (1981), 21–30.
    [11] W. Wu, Fuzzy congruences and normal fuzzy subgroups, Math. Appl., 3 (1988), 9–20.
    [12] I. J. Kumar, P. K. Saxena, P. Yadava, Fuzzy normal subgroups and fuzzy quotients, Fuzzy Sets Syst., 46 (1992), 121–132. doi: 10.1016/0165-0114(92)90273-7. doi: 10.1016/0165-0114(92)90273-7
    [13] Y. Zhang, K. Zou, Normal fuzzy subgroups and conjugate fuzzy subgroups, J. Fuzzy Math., 1 (1993), 571–585.
    [14] N. Ajmal, K. V. Thomas, The lattices of fuzzy subgroups and fuzzy normal subgroups, Inf. Sci., 76 (1994), 1–11. doi: 10.1016/0020-0255(94)90064-7. doi: 10.1016/0020-0255(94)90064-7
    [15] N. Ajmal, The lattice of fuzzy normal subgroups is modular, Inf. Sci., 83 (1995), 199–209. doi: 10.1016/0020-0255(94)00074-L. doi: 10.1016/0020-0255(94)00074-L
    [16] N. Ajmal, K. V. Thomas, A complete study of the lattices of fuzzy congruences and fuzzy normal subgroups, Inf. Sci., 82 (1995), 198–218. doi: 10.1016/0020-0255(94)00050-L. doi: 10.1016/0020-0255(94)00050-L
    [17] N. N. Morsi, Note on "Normal fuzzy subgroups and fuzzy normal series of finite groups [Fuzzy Sets Syst 1995:72:379–383]", Fuzzy Sets Syst., 87 (1997), 255–256. doi: 10.1016/S0165-0114(96)00140-6. doi: 10.1016/S0165-0114(96)00140-6
    [18] Y. Yu, A theory of isomorphisms of fuzzy groups, Fuzzy Syst. Math., 2 (1988), 57–68.
    [19] M. S. Eroğlu, The homomorphic image of a fuzzy subgroup is always a fuzzy subgroup, Fuzzy Sets Syst., 33 (1989), 255–256. doi: 10.1016/0165-0114(89)90246-7. doi: 10.1016/0165-0114(89)90246-7
    [20] N. Ajmal, Homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient groups, Fuzzy Sets Syst., 61 (1994), 329–339. doi: 10.1016/0165-0114(94)90175-9. doi: 10.1016/0165-0114(94)90175-9
    [21] D. G. Chen, W. X. Gu, Generating fuzzy factor groups and fundamental theorem of isomorphism, Fuzzy Sets Syst., 2 (1996), 357–360. doi: 10.1016/0165-0114(95)00271-5. doi: 10.1016/0165-0114(95)00271-5
    [22] S. Sebastian, S. Babunder, Fuzzy groups and group homomorphisms, Fuzzy Sets Syst., 81 (1996), 397–401. doi: 10.1016/0165-0114(95)00213-8. doi: 10.1016/0165-0114(95)00213-8
    [23] N. N. Morsi, S. E. B. Yehia, Fuzzy-quotient groups, Inf. Sci., 81 (1994), 177–191. doi: 10.1016/0020-0255(94)90096-5.
    [24] M. A. A Mishref, Restudy of fuzzy factor groups and fuzzy solvable groups, J. Fuzzy Math., 7 (1998), 311–320.
    [25] W. B. V. Kandasamy, D. Meiyappan, Fuzzy symmetric subgroups and conjugate fuzzy subgroups of a group, J. Fuzzy Math., 6 (1998), 905–914.
    [26] M. A. Kazim, M. Naseerudin, On almost semigroups, Port. Mathematica, 2 (1972), 41–47.
    [27] J. R. Cho, J. Ježek, T. Kepka, Paramedial groupoids, Czech. Math. J., 49 (1999), 277–290. doi: 10.1023/A:1022448218116.
    [28] P. Holgate, Groupoids satisfying a simple invertive law, Math. Stud., 61 (1992), 101–106.
    [29] N. Stevanovic, P. V. Protic, In actions of the AG-groupoids, Novi Sad J. Math., 29 (1999), 19–26.
    [30] N. Naseeruddin, Some studies in almost semigroups and flocks, PhD Thesis, Aligarh Muslim University, 1970.
    [31] V. Volenec, Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet., 421 (1986), 79–91.
    [32] N. K. Puharev, Geometric questions of certain medial quasigroups, Sibirsk. Mat. Zh., 9 (1968), 891–897.
    [33] M. Shah, A. Ali, Some structural properties of AG-groups, Int. Math. Forum, 6 (2011), 1661–1667.
    [34] P. V. Protic, N. Stevanovic, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. Appl., 6 (1995), 371–383.
    [35] A. Distler, M. Shah, V. Sorge, Enumeration of AG-groupoids, In: J. H. Davenport, W. M. Farmer, J. Urban, F. Rabe, CICM 2011: Intelligent computer mathematics, Lecture notes in computer science, Springer, 6824 (2011), 1–14. doi: 10.1007/978-3-642-22673-1_1.
    [36] A. Ullah, I. Ahmad, M. Shah, On the equal-height elements of fuzzy AG-subgroups, Life Sci. J., 10 (2013), 3143–3146.
    [37] I. Ahmad, Amanullah, M. Shah, Fuzzy AG-subgroups, Life Sci. J., 9 (2012), 3931–3936.
    [38] A. Ullah, A study on fuzzy AG-groups, PhD Thesis, University of Malakand, 2015.
    [39] Q. Mushtaq, M. S. Kamran, On left almost groups, Proc.-Pak. Acad. Sci., 33 (1996), 53–56.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1895) PDF downloads(86) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog