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1. Introduction

The concept of fuzzy sets along with various operations has been introduced by Zadeh in 1965 [1].
Due to the diverse applications of fuzzy sets ranging from engineering, computer science and social
behaviour studies; the researchers have taken a keen interest in the subject in its related fields.
Rosenfeld is the pioneer, who initiated fuzzification of algebraic structures [2]. He introduced basic
definitions which are common and popular among the researchers. Rosenfeld introduced the notions
of fuzzy subgroupoids and fuzzy subgroups and obtained some of their basic properties. Most of the
recent works on fuzzy groups follow Rosenfeld’s definitions. Anthony and Sherwood further
redefined and characterized fuzzy subgroups [3, 4]. Bhattacharya and Mukherjee introduced the
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notion of fuzzy normal subgroups, fuzzy relation and fuzzy cosets. They provided fuzzy
generalizations of some remarkable results such as, Lagrange’s theorem and Cayley’s theorem [5–9].
Many other papers on fuzzy subgroups have also appeared which generalize various concepts of
group theory such as conjugate subgroups, normal subgroups, quotient groups and cosets, congruence
relations, homomorphism, isomorphism, series in groups and many more [10–25].

Abel-Grassmann’s concept of groupoids (AG-groupoids) is about forty years old and, related to this
concept, so far more than hundred research papers have been published and many more either lie on
the archives or waiting to see the light. Though it was slowly and gradually explored, yet during the
last couple of years, it attracted the attention of many researchers and ample research was carried out
in this area.

In 1972, Kazim and Naseeruddin introduced AG-groupoids [26] and called it “left almost
semigroup” or “LA-semigroup”. In the literature this structure is also known by various names; right
modular groupoid” [27], “left invertive groupoid” [28] or commonly by Abel Grassmann’s groupoid
(AG-groupoid) suggested by Stevanovic and Protic [29]. AG-groupoids have many applications in the
theory of flocks [30], differential geometry, geometry and algebra [31–33]. Stevanovic and Protic [29]
constructed the notion of n-inflation of the AG-groupoids. They also made such a constructions for
AG*-groupoids [34]. They also discussed the properties of n-inflations of AG-groupoids, inflation’s
of the AG-band and semi-lattices.

An AG-groupoid (or LA-semigroups) is a nonassociative groupoid in general, in which the left
invertive law “(ab)c = (cb)a holds for all a, b, c”. An AG-groupoid generalizes a commutative
semigroup, and lies midway between a groupoid and a commutative semigroup. Even though the
structure of AG-groupoid is nonassociative and noncommutative, it still holds many interesting
properties which are usually found in commutative and associative algebraic structures. Very recently
enumerations of AG-groupoids up to order 6 have been carried out with the help of GAP package for
AG-groupoids called “AGGROUPOIDS” [35]. Presently, numerous examples of AG-groupoids are
available for study, and various conjectures and conclusions can be drawn from the available data.

In general, an AG-group is a nonassociative structure. Unlike groups and other structures,
commutativity and associativity imply each other in AG-groups and thus AG-groups become abelian
group if any one of them is allowed in AG-group. It is a generalization of the abelian group and a
special case of quasi-group. The structure of AG-group is very interesting in which one has to play
with brackets. The order of an element cannot be defined in AG-groups, i.e. AG-groups cannot be
locally associative, otherwise, it becomes an abelian group. However, the order of an element up to 2
can be found and is called involution. Further, achievement was made when AG-groups were
enumerated up to order 12 [35]. An AG-groupoid (G, ·) is called an AG-group or left almost group
(LA-group), if there exists a unique left identity e ∈ G (i.e. ea = a for all a ∈ G), for all a ∈ G there
exists a−1 ∈ G such that a−1a = aa−1 = e. Dually, a right AG-groupoid (G, ·) is called a right
AG-group or right almost group (RA-group), if there exists a unique right identity e ∈ G (i.e. ae = a
for all a ∈ G), for all a ∈ G there exists a−1 ∈ G such that a−1a = aa−1 = e.

In this paper, fuzzy AG-subgroup [36, 37] is further generalized and the notions of fuzzy cosets,
conjugate fuzzy AG-subgroups, fuzzy quotient AG-subgroup, fuzzy AG-subgroup of the quotient
(factor) AG-subgroup, fuzzy homomorphism of AG-group is introduced. These notions will provide a
new direction for the researchers in this area. At the end of the paper, fuzzy version of famous
Lagrange’s theorem for finite AG-group is also introduced. The results in this paper are taken from
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the PhD thesis of the first author [38].

2. Preliminaries

In the rest of this paper G denotes an AG-group unless otherwise stated and e denotes the left
identity of G.

Definition 1. [37] Let A be any fuzzy subset of an AG-group G i.e. A ∈ FP(G). Then A is called a
fuzzy AG-subgroup of G if for all x, y in G:

(i) µA(xy) ≥ µA(x) ∧ µA(y),
(ii) µA(x−1) ≥ µA(x).

The set of all fuzzy AG-subgroups of G is denoted by F(G). If A ∈ F(G), then

A∗ = {x ∈ G | µA(x) = µA(e)}. (2.1)

Example 1. In the AG-group G of order 4 with the following Cayley’s table,

· 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 3 2 1 0
3 2 3 0 1

The fuzzy AG-subgroup A of G is defined by

A = {(0, µA(0)) , (1, µA(1)) , (2, µA(2)) , (3, µA(3))} = {(0, t0) , (1, t1) , (2, t2) , (3, t2)} ,

where t0 > t1 > t2; and t0, t1, t2 ∈ [0, 1].

Example 2. Consider the AG-group G of order 4 with the following Cayley’s table,

· 0 1 2 3
0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0

The fuzzy AG-subgroup A of G is defined by

A = {(0, µA(0)) , (1, µA(1)) , (2, µA(2)) , (3, µA(3))} = {(0, t0) , (1, t1) , (2, t1) , (3, t1)} ,

where t0, t1 ∈ [0, 1] and t0 > t1.

Proposition 1. [37] If A ∈ F(G), then µA(x−1) = µA(x) and µA(e) ≥ µA(x) for all x ∈ G; where e is the
left identity of G.
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Definition 2. Let A ∈ F(G) and u ∈ G. Then B is called fuzzy conjugate (with respect to u) denoted
by, A c

∼ Bu, if µBu(x) = µA

(
(ux)u−1

)
for all x ∈ G or simply by

µB(x) = µA

(
(ux)u−1

)
, for all x ∈ A.

Remark 1. It is noted that a fuzzy conjugate subgroup of a fuzzy subgroup is again a fuzzy subgroup,
while the fuzzy conjugate of a fuzzy AG-subgroup may or may not be a fuzzy AG-subgroup.

Example 3. The fuzzy conjugates of a fuzzy AG-subgroup A are given as follows:

A = {(0, µA(0)) , (1, µA(1)) , (2, µA(2)) , (3, µA(3)) , (4, µA(4)) , (5, µA(5))}
= {(0, t0) , (1, t2) , (2, t1) , (3, t2) , (4, t1) , (5, t2)} ,

where t0 > t1 > t2 and t0, t1, t2 ∈ [0, 1] of an AG-group G of order 6 in the following table:

· 0 1 2 3 4 5
0 0 1 2 3 4 5
1 5 0 1 2 3 4
2 4 5 0 1 2 3
3 3 4 5 0 1 2
4 2 3 4 5 0 1
5 1 2 3 4 5 0

are given bellow:

B0 = {
(
0, µB0(0)

)
,
(
1, µB0(1)

)
,
(
2, µB0(2)

)
,
(
3, µB0(3)

)
,(

4, µB0(4)
)
,
(
5, µB0(5)

)
}

= {(0, µA(0)) , (1, µA(5)) , (2, µA(4)) , (3, µA(3)) ,
(4, µA(2)) , (5, µA(1))}

= {(0, t0) , (1, t2) , (2, t1) , (3, t2) , (4, t1) , (5, t2)} = A,

B1 = {
(
0, µB1(0)

)
,
(
1, µB1(1)

)
,
(
2, µB1(2)

)
,
(
3, µB1(3)

)
,(

4, µB1(4)
)
,
(
5, µB1(5)

)
}

= {(0, µA(2)) , (1, µA(1)) , (2, µA(0)) , (3, µA(5)) ,
(4, µA(4)) , (5, µA(3))}

= {(0, t1) , (1, t2) , (2, t0) , (3, t2) , (4, t1) , (5, t2)} ,

B2 = {
(
0, µB2(0)

)
,
(
1, µB2(1)

)
,
(
2, µB2(2)

)
,
(
3, µB2(3)

)
,(

4, µB2(4)
)
,
(
5, µB2(5)

)
}

= {(0, µA(4)) , (1, µA(3)) , (2, µA(2)) , (3, µA(1)) ,
(4, µA(0)) , (5, µA(5))}

= {(0, t1) , (1, t2) , (2, t1) , (3, t2) , (4, t0) , (5, t2)} .
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Similarly, we can calculate B3 = A, B4, and B5. Here, both B1 = B4 and B2 = B5 are not fuzzy
AG-subgroups of G, as

µB1(2 · 2) = µB1(0) = t1 � µB1(2) ∧ µB1(2) = t0,

and
µB2(4 · 4) = µB2(0) = t1 � µB2(4) ∧ µB1(4) = t0.

Example 4. The fuzzy conjugates of a fuzzy AG-subgroup C are given by:

C = {(0, µC(0)) , (1, µC(1)) , (2, µC(2)) , (3, µC(3)) , (4, µC(4)) ,
(5, µC(5)) , (6, µC(6)) , (7, µC(7)) , (8, µC(8))},

⇒ C = {(0, s3) , (1, s4) , (2, s4)} ,

where s3 > s4 and s3, s4 ∈ [0, 1], for any AG-group G of order 9 with the following table:

· 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 2 0 1 4 5 3 7 8 6
2 1 2 0 5 3 4 8 6 7
3 7 6 8 0 2 1 5 3 4
4 6 8 7 1 0 2 4 5 3
5 8 7 6 2 1 0 3 4 5
6 4 3 5 8 6 7 0 2 1
7 3 5 4 7 8 6 1 0 2
8 5 4 3 6 7 8 2 1 0

are given bellow:

D0 =
{(

0, µD0(0)
)
,
(
1, µD0(1)

)
,
(
2, µD0(2)

)}
= {(0, µC(0)) , (1, µC(2)) , (2, µC(1))}
= {(0, s3) , (1, s4) , (2, s4)} = C,

D1 =
{(

0, µD1(0)
)
,
(
1, µD1(1)

)
,
(
2, µD1(2)

)}
= {(0, µC(2)) , (1, µC(1)) , (2, µC(0))}
= {(0, s4) , (1, s4) , (2, s3)} ,

and

D2 =
{(

0, µD2(0)
)
,
(
1, µD2(1)

)
,
(
2, µD2(2)

)}
= {(0, µC(1)) , (1, µC(0)) , (2, µC(2))}
= {(0, s4) , (1, s3) , (2, s4)} .

Hence, D0, D1 and D2 are the fuzzy conjugates of a fuzzy AG-subgroup C, in which D1 and D2 are not
fuzzy AG-subgroups of G as

µD1(2 · 2) = µD1(0) = s4 � µD1(2) ∧ µD1(2) = s3,

and
µD2(1 · 1) = µD2(0) = s4 � µD2(1) ∧ µD2(1) = s3.
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Definition 3. Let A ∈ F(G). Then A is called a fuzzy normal AG-subgroup of G if

µA

(
(xy)x−1

)
= µA(y) for all x, y ∈ G.

In other words, A is fuzzy normal AG-subgroup of G if A is self fuzzy conjugate. FN(G) denotes the
set of all fuzzy normal AG-subgroups of G.

Example 5. Let G be an AG-group of order 6 as defined in Example 3, and let A be fuzzy AG-subgroup
of G, defined by

A = {(0, µA(0)) , (1, µA(1)) , (2, µA(2)) , (3, µA(3)) ,
(4, µA(4)) , (5, µA(5))}

= {(0, t0) , (1, t1) , (2, t0) , (3, t1) , (4, t0) , (5, t1)} ,

where t0 > t1 and t0, t1 ∈ [0, 1]. The fuzzy conjugates of a fuzzy AG-subgroup A of G, are given bellow:

B0 = {
(
0, µB0(0)

)
,
(
1, µB0(1)

)
,
(
2, µB0(2)

)
,
(
3, µB0(3)

)
,(

4, µB0(4)
)
,
(
5, µB0(5)

)
}

= {(0, µA(0)) , (1, µA(5)) , (2, µA(4)) , (3, µA(3)) ,
(4, µA(2)) , (5, µA(1))}

= {(0, t0) , (1, t1) , (2, t0) , (3, t1) , (4, t0) , (5, t1)} = A,

B1 = {
(
0, µB1(0)

)
,
(
1, µB1(1)

)
,
(
2, µB1(2)

)
,
(
3, µB1(3)

)
,(

4, µB1(4)
)
,
(
5, µB1(5)

)
}

= {(0, µA(2)) , (1, µA(1)) , (2, µA(0)) , (3, µA(5)) ,
(4, µA(4)) , (5, µA(3))}

= {(0, t0) , (1, t1) , (2, t0) , (3, t1) , (4, t0) , (5, t1)} = A,

B2 = {
(
0, µB2(0)

)
,
(
1, µB2(1)

)
,
(
2, µB2(2)

)
,
(
3, µB2(3)

)
,(

4, µB2(4)
)
,
(
5, µB2(5)

)
}

= {(0, µA(4)) , (1, µA(3)) , (2, µA(2)) , (3, µA(1)) ,
(4, µA(0)) , (5, µA(5))}

= {(0, t0) , (1, t1) , (2, t0) , (3, t1) , (4, t0) , (5, t1)} = A.

Similarly, we can calculate B3 = B4 = B5 = A. Hence A is fuzzy normal AG-subgroup of G, as A is self
conjugate.

Lemma 1. Let A ∈ F(G). Then µA(xy) = µA(yx), for all x, y ∈ G.

Proof. Suppose that A ∈ F(G). Then

µA(xy) = µA ((ex) y) = µA ((yx) e)) (by left invertive law)
≥ µA(yx) ∧ µA(e) = µA(yx) (by Proposition 1).

Similarly, we can show that µA(yx) ≥ µA(xy), for all x, y ∈ G. Consequently, µA(xy) ≥ µA(yx) ≥ µA(xy),
for all x, y ∈ G. Hence µA(yx) = µA(xy). �
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In the following, a fuzzy coset of fuzzy AG-subgroups and binary operation on fuzzy coset is
defined. Various examples of a fuzzy coset of fuzzy AG-subgroups are also constructed, and some of
the properties of fuzzy coset of fuzzy AG-subgroups are investigated.

Definition 4. Let A ∈ F(H) where H is an AG-subgroup of G, i.e., H ≤ G and x ∈ G, then the set Ax
defined by

Ax =
{(

h, µA(hx−1)
)
, h ∈ H

}
,

is called fuzzy coset of H in G with respect to the fuzzy AG-subgroup A of H.

It should be noted that, if A ∈ F(G), then by Lemma 1, µA(xy) = µA(yx) for all x, y ∈ G. This
implies that, each fuzzy left and fuzzy right coset of AG-subgroups always coincide with each other.
Therefore, instead of fuzzy left (fuzzy right) coset the term fuzzy coset of AG-subgroup H in G is used.

Example 6. Consider the AG-group G of order 4 as in Example 2. Let H = {0, 2} be an AG-subgroup
(abelian group) of G:

A fuzzy subset A of H defined by

A = {(0, µA(0)) , (2, µA(2))} = {(0, t0) , (2, t1)} ,

where t0, t1 ∈ [0, 1] and t0 > t1, is a fuzzy AG-subgroup of H in G.
All the disjoint fuzzy coset of H in G with respect to fuzzy AG-subgroup A of H are obtained as

follow:

A0 =
{(

0, µA(0 · 0−1)
)
,
(
2, µA(2 · 0−1)

)}
= {(0, µA(0)) , (2, µA(2))}

⇒ A0 = {(0, t0) , (2, t1)} = A,

A1 =
{(

0, µA(0 · 1−1)
)
,
(
2, µA(2 · 1−1)

)}
= {(0, µA(1)) , (2, µA(3))}

⇒ A1 = ∅,

A2 =
{(

0, µA(0 · 2−1)
)
,
(
2, µA(2 · 2−1)

)}
= {(0, µA(2)) , (2, µA(0))}

⇒ A2 = {(0, t1) , (2, t0)} ,

A3 =
{(

0, µA(0 · 3−1)
)
,
(
2, µA(2 · 3−1)

)}
= {(0, µA(3)) , (2, µA(1))}

⇒ A3 = ∅.

Hence A and A2 are the two nonempty disjoint fuzzy cosets of H in G with respect to fuzzy AG-subgroup
A of H.
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Example 7. Consider the AG-group G of order 6 as in Example 3. Let H = {0, 2, 4} be an AG-
subgroup of G of order 3.

A fuzzy AG-subgroup A of H in G is given by:

A = {(0, µA(0)) , (2, µA(2)) , (4, µA(4))} = {(0, t0) , (2, t1) , (4, t1)} ,

where t0 > t1, and t0, t1 ∈ [0, 1].
All the disjoint fuzzy cosets of H in G with respect to A of H are obtained as follow:

A0 =
{(

0, µA(0 · 0−1)
)
,
(
2, µA(2 · 0−1)

)
,
(
4, µA(4 · 0−1)

)}
= {(0, µA(0)) , (2, µA(4)) , (4, µA(2))}

⇒ A0 = {(0, t0) , (2, t1) , (4, t1)} = A,

A1 =
{(

0, µA(0 · 1−1)
)
,
(
2, µA(2 · 1−1)

)
,
(
4, µA(4 · 1−1)

)}
= {(0, µA(1)) , (2, µA(5)) , (4, µA(3))}

⇒ A1 = ∅,

A2 =
{(

0, µA(0 · 2−1)
)
,
(
2, µA(2 · 2−1)

)
,
(
4, µA(4 · 2−1)

)}
= {(0, µA(2)) , (2, µA(0)) , (4, µA(4))}

⇒ A2 = {(0, t1) , (2, t0) , (4, t1)} ,

A3 =
{(

0, µA(0 · 3−1)
)
,
(
2, µA(2 · 3−1)

)
,
(
4, µA(4 · 3−1)

)}
= {(0, µA(3)) , (2, µA(1)) , (4, µA(5))}

⇒ A3 = ∅,

A4 =
{(

0, µA(0 · 4−1)
)
,
(
2, µA(2 · 4−1)

)
,
(
4, µA(4 · 4−1)

)}
= {(0, µA(4)) , (2, µA(2)) , (4, µA(0))}

⇒ A4 = {(0, t1) , (2, t1) , (4, t0)} ,

A5 =
{(

0, µA(0 · 5−1)
)
,
(
2, µA(2 · 5−1)

)
,
(
4, µA(4 · 5−1)

)}
= {(0, µA(5)) , (2, µA(3)) , (4, µA(1))}

⇒ A5 = ∅.

Hence A, A2 and A4 are three nonempty disjoint fuzzy cosets of H in G with respect to fuzzy AG-
subgroup A of H.

Example 8. Consider the AG-group G of order 9 as in Example 4. Let

H1 = {0, 1, 2}, H2 = {0, 3, 7}, H3 = {0, 4, 6}
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and
H4 = {0, 5, 8}

be any four nonabelian AG-subgroups of G.
Here A, B, C and D are fuzzy AG-subgroups of H1, H2, H3 and H4 respectively defined by:

A = {(0, µA(0)) , (1, µA(1)) , (2, µA(2))}
= {(0, 0.5) , (1, 0.3) , (2, 0.3)} ,

B = {(0, µA(0)) , (3, µA(3)) , (7, µA(7))}
= {(0, 0.4) , (3, 0.2) , (7, 0.2)} ,

C = {(0, µA(0)) , (4, µA(4)) , (6, µA(6))}
= {(0, 0.6) , (4, 0.4) , (6, 0.4)} ,

and

D = {(0, µA(0)) , (5, µA(5)) , (8, µA(8))}
= {(0, 0.9) , (5, 0.7) , (8, 0.7)} .

Then the following disjoint fuzzy cosets of H1 in G with respect to A are obtained,

A0 =
{(

0, µA(0 · 0−1)
)
,
(
1, µA(1 · 0−1)

)
,
(
2, µA(2 · 0−1)

)}
= {(0, µA(0)) , (2, µA(2)) , (4, µA(1))}

⇒ A0 = {(0, 0.5) , (2, 0.3) , (4, 0.3)} = A,

A1 =
{(

0, µA(0 · 1−1)
)
,
(
1, µA(1 · 1−1)

)
,
(
2, µA(2 · 1−1)

)}
= {(0, µA(1)) , (2, µA(0)) , (4, µA(2))}

⇒ A1 = {(0, 0.3) , (2, 0.5) , (4, 0.3)} ,

A2 =
{(

0, µA(0 · 2−1)
)
,
(
1, µA(1 · 2−1)

)
,
(
2, µA(2 · 2−1)

)}
= {(0, µA(2)) , (2, µA(1)) , (4, µA(0))}

⇒ A2 = {(0, 0.0) , (2, 0.3) , (4, 0.5)} ,

and for all x ∈ (G − H)

Ax =
{(

0, µA(0 · x−1)
)
,
(
1, µA(2 · x−1)

)
,
(
2, µA(4 · x−1)

)}
⇒ Ax = ∅.

Hence A, A1 and A2 are the three nonempty disjoint fuzzy cosets of H1 in G with respect to fuzzy
AG-subgroup A of H1.

Similarly, all the disjoint fuzzy cosets of B, C and D of H2, H3 and H4 in G respectively can be
calculated in the same way.
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3. Fuzzy quotient AG-subgroups

It is important to note that if G is a group and H is any subgroup of G, then (Ha)(Hb) , Hab, unless
H is normal in G. There is no such condition in AG-groups because of the medial law, i.e. if Ha and
Hb belongs to G/H, where G is an AG-group and H is an AG-subgroup of G, then

(Ha)(Hb) = H(ab),

without having any extra condition on H [39]. Therefore, using this idea, a fuzzy quotient AG-subgroup
or a fuzzy factor AG-subgroup can be defined in the following result.

Theorem 1. Let H ≤ G and A ∈ F(H). Show that the set G/A = {Ax : x ∈ G} forms an AG-group
under the binary operation defined by Ax · Ay = A (xy) for all x, y ∈ G.

Proof. First we show that the binary operation is well defined. Let x, y, x◦, y◦ ∈ G such that Ax = Ax◦
and Ay = Ay◦.

We show that Ax · Ay = Ax◦ · Ay◦, i.e. A (xy) = A (x◦y◦). By definition of fuzzy cosets A of H we
get,

A (xy) =
{(

h, µA

(
h (xy) −1

))
: h ∈ H

}
=

{(
h, µA

(
h
(
x−1y−1

)))
: h ∈ H

}
, (by Lemma 1-(ix) [34])

and

A (x◦y◦) =
{(

h, µA(h(x◦y◦)−1)
)

: h ∈ H
}

=
{(

h, µA(h(x−1
◦ y−1
◦ )

)
: h ∈ H

}
. (by Lemma 1-(ix) [34])

Now, for all x, y ∈ G,

µA

(
h
(
x−1y−1

))
= µA

(
e
(
h
(
x−1y−1

)))
= µA

((
(x◦y◦) −1 (x◦y◦)

) (
h
(
x−1y−1

)))
= µA

(((
x−1
◦ y−1
◦

)
(x◦y◦)

) (
h
(
x−1y−1

)))
= µA

(
h
(((

x−1
◦ y−1
◦

)
(x◦y◦)

) (
x−1y−1

))) (
by Lemma 1-(iii) [34]

)
= µA

(
h
(((

x−1y−1
)

(x◦y◦)
) (

x−1
◦ y−1
◦

))) (
by the left invertive law

)
= µA

(((
x−1y−1

)
(x◦y◦)

) (
h
(
x−1
◦ y−1
◦

))) (
by Lemma 1-(iii) [34]

)
≥ µA

((
x−1y−1

)
(x◦y◦)

)
∧ µA

(
h
(
x−1
◦ y−1
◦

))
.

Therefore,

µA

(
h
(
x−1y−1

))
≥ µA

((
x−1y−1

)
(x◦y◦)

)
∧ µA

(
h
(
x−1
◦ y−1
◦

))
. (3.1)

Now, we show that µA

((
x−1y−1

)
(x◦y◦)

)
= µA(e) in Eq (3.1). Since, Ax = Ax◦ using definition of

fuzzy cosets, for all h ∈ H we obtain

µA(hx−1) = µA(hx−1
◦ ). (3.2)

Similarly, since Ay = Ay◦, again using the definition of fuzzy cosets, for all h ∈ H we obtain

µA(hy−1) = µA(hy−1
◦ ). (3.3)
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Now, we have

µA

((
x−1y−1

)
(x◦y◦)

)
= µA

((
(x◦y◦) y−1

)
x−1

)
,
(
by the left invertive law

)
substituting h by

(
(x◦y◦) y−1

)
in Eq (3.2) we get,

µA

((
x−1y−1

)
(x◦y◦)

)
= µA

((
(x◦y◦) y−1

)
x−1
◦

)
= µA

(
x◦

((
y◦y−1

)
x−1
◦

)) (
by Lemma 1-(xiii) [34]

)
= µA((y◦y−1)(x◦x−1

◦ ))
(
by Lemma 1-(iii) [34]

)
= µA

((
y◦y−1

)
e
)

= µA

(
y−1y◦

)
= µA

(
y◦y−1

) (
by Lemma (1)

)
= µA

(
y◦y−1
◦

) (
substituting h by y◦ in Eq (3.3)

)
= µA(e).

Therefore, Eq (3.1) implies that µA

(
h
(
x−1y−1

))
≥ µA

(
h
(
x−1
◦ y−1
◦

))
.

Similarly, one can prove that µA

(
h
(
x−1
◦ y−1
◦

))
≥ µA

(
h
(
x−1y−1

))
. Consequently, we have

µA

(
h
(
x−1y−1

))
= µA

(
h
(
x−1
◦ y−1
◦

))
⇒ µA

(
h (xy)−1

)
= µA

(
h (x◦y◦)−1

)
(by Lemma 1-(ix) [34])

⇒ A (xy) = A (x◦y◦) .

Hence, the binary operation of cosets is well-defined.
Now we show that G/A forms an AG-group under the binary operation “·”.
Groupoid: G/A is a groupoid as the binary operation “·” is closed in G/A.
AG-groupoid: G/A satisfies the left invertive law under the binary operation “·”. Since for all

x, y, z ∈ G,

(Ax · Ay) Az = Axy · Az = A ((xy) z)

= A ((zy) x)
(
by the left invertive law

)
= Azy · Ax = (Az · Ay) Ax.

Hence, G/A is an AG-groupoid.
Nonassociative: Again for all x, y, z ∈ G,

(Ax · Ay) Az = Axy · Az = A ((xy) z) , A (x (yz)) = Ax(Ay · Az).

Therefore, (Ax · Ay) Az , Ax(Ay · Az) in general. Hence, G/A is a nonassociative AG-groupoid.
Existence of Left Identity: For all x ∈ G,

(A · Ax) = Ae · Ax = A (ex) = Ax,

but
(Ax · A) = Ax · Ae = A (xe) , Ax, (in general)
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This implies that A is the left identity of G/A.
Existence of Inverses: For all x ∈ G,

Ax · Ax−1 = A
(
xx−1

)
= Ae = A,

and
Ax−1 · Ax = A

(
x−1x

)
= Ae = A.

Thus Ax−1 is the inverse of Ax for all x ∈ G. Hence, G/A is an AG-group. �

Remark 2. An AG-group G/A, defined in Theorem 1, is called fuzzy quotient AG-subgroup or fuzzy
factor AG-subgroup.

Definition 5. Let G be a finite AG-group and H ≤ G, if A ∈ F(H), then G/A is an AG-group by
Theorem 1. The number of distinct cosets of H in G with respect to A ∈ F(H) in G/A (called the index
of H in G with respect to A) written as [G : A].

Example 9. Consider the AG-group G of order 4 as in Example 1. Let H = {0, 1} be any AG-subgroup
of G.

A fuzzy AG-subgroup A of H in G is defined by:

A = {(0, µA(0)), (1, µA(1))} = {(0, 0.8), (1, 0.4)} .

The distinct fuzzy cosets of H in G with respect to A in G are A and A1. Therefore, G/A = {A, A1} is
an AG-group under the binary operation between two cosets defined by

Ax · Ay = A (xy) for all x, y ∈ G.

Here [G : A] = 2.

Example 10. Consider the AG-group G of order 6 as in Example 3. Let H = {0, 2, 4} be an AG-
subgroup of G of order 3.

A fuzzy AG-subgroup A of H in G is given by:

A = {(0, µA(0)) , (2, µA(2)) , (4, µA(4))} = {(0, t0) , (2, t1) , (4, t1)} ,

where t0 > t1, and t0, t1 ∈ [0, 1].
All the distinct fuzzy cosets of H in G with respect to A of H are A, A2 and A4. Therefore, G/A =

{A, A2, A4} is an AG-group under the binary operation between two cosets defined by

Ax · Ay = A (xy) for all x, y ∈ G.

G/A satisfies the left invertive law; for all x, y, z ∈ G,

(Ax · Ay) Az = Axy · Az = A ((xy) z) = A ((zy) x) = Azy · Ax = (Az · Ay) Ax.

G/A is nonassociative; because

(A2 · A2) A4 = A(2 · 2) · A4 = A (0 · 4) = A4,
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and
A2 (A2 · A4) = A2 · A (2 · 4) = A2 · A2 = A (2 · 2) = A0 = A.

This implies that
(A2 · A2) A4 , A2 (A2 · A4) .

A is the left identity of G/A, but not the right one, because A · Ax = A0 · Ax = A(0 · x) = Ax, for all
x ∈ G, but A2 · A = A(2 · 0) = A4.

Each fuzzy coset in G/A is the inverse of itself, since all the properties of AG-group are satisfied.
Hence G/A is an AG-group as shown in Theorem 1. Here [G : A] = 3.

In the following fuzzy AG-subgroup of the quotient AG-group is defined.

4. Fuzzy AG-subgroup of (G/H)

Theorem 2. Let A ∈ F(G) and H be any AG-subgroup of G. If B is any fuzzy subset of G/H, defined by

B = {(Hx, µB (Hx)) : Hx ∈ (G/H)} = {(Hx, ∨ (µA(z))) : z ∈ Hx and Hx ∈ (G/H)} ,

then B ∈ F(G/H).

Proof. By definition of coset in AG-groups, for all x, y ∈ G, Hx·Hy = H(xy) by medial law. Therefore,
for all x, y ∈ G, we get

µB (Hx · Hy) = µB (H (xy))

= ∨ {(µA(z)) : z ∈ H (xy)}
= ∨ {(µA(uv)) : z = uv ∈ H(xy) = Hx · Hy⇒ u ∈ Hx, v ∈ Hy}

≥ ∨ {(µA(u) ∧ µA(v)) : u ∈ Hx, v ∈ Hy}

= {∨ ((µA(u)) : u ∈ Hx)} ∧ {∨ ((µA(v)) : v ∈ Hy)}
= µB (Hx) ∧ µB (Hy) .

This implies that for all x, y ∈ G,

µB (Hx · Hy) ≥ µB (Hx) ∧ µB (Hy) ,

and

µB (Hx)−1 = µB

(
Hx−1

)
= ∨

{
(µA(z)) : z ∈ Hx−1

}
= ∨

{(
µA

(
w−1

))
: w−1 ∈ Hx−1

}
≥ ∨ {(µA (w)) : w ∈ Hx} = µB (Hx) .

This implies that for all x ∈ G,
µB (Hx)−1

≥ µB (Hx) .

Hence B ∈ F(G/H). �

Remark 3. The fuzzy AG-subgroup defined in Theorem 2, is called the Fuzzy AG-subgroup of the
Quotient (or Factor) AG-subgroup.
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Example 11. Let G be the AG-group of order 9 as defined in Example 4. Let H = {0, 1, 2} be an
AG-subgroup of G. The distinct cosets of H in G are H = {0, 1, 2}, H3 = {3, 4, 5} and H6 = {6, 7, 8}.
Therefore, G/H = {H, H3, H6} is an AG-group defined in the following Cayley’s table:

· H H3 H6
H H H3 H6
H3 H6 H H3
H6 H3 H6 H

Consider a fuzzy AG-subgroup A of G defined by

A = {(0, µA(0)) , (1, µA(1)) , (2, µA(2)) , (3, µA(3)) , (4, µA(4)) ,
(5, µA(5)) , (6, µA(6)) , (7, µA(7)) , (8, µA(8))}

= {(0, t0) , (1, t1) , (2, t1) , (3, t2) , (4, t2) , (5, t2) , (6, t2) , (7, t2) , (8, t2)} ,

where t0 > t1 > t2 and t0, t1, t2 ∈ [0, 1].
Let B ∈ FP (G/H) be defined by

B = {(Hx, µB (Hx)) : Hx ∈ (G/H)} .

Then the membership µB (Hx) of Hx ∈ (G/H) for all x ∈ G is given by:

µB (H) = ∨ {µA (0) , µA (1) , µA (2)} = ∨ {t0, t1, t1} = t0.

µB (H3) = ∨ {µA (3) , µA (4) , µA (5)} = ∨ {t2, t2, t2} = t2.

µB (H6) = ∨ {µA (6) , µA (7) , µA (8)} = ∨ {t2, t2, t2} = t2.

Therefore, B = {(H, t0) , (H3, t2) , (H6, t2)} . It can be easily verified that B ∈ F (G/H).

Example 12. Consider the AG-group G of order 6 as defined in Example 3. Let H = {0, 2, 4} be an
AG-subgroup of G. The distinct cosets of H in G are H = {0, 2, 4} and H3 = {1, 3, 5}. Therefore,
G/H = {H, H1} is an AG-group.

Define a fuzzy AG-subgroup A of G by:

A = {(0, µA(0)) , (1, µA(1)) , (2, µA(2)) , (3, µA(3)) , (4, µA(4)) , (5, µA(5))}
= {(0, t0) , (1, t2) , (2, t1) , (3, t2) , (4, t1) , (5, t2)} ,

where t0 > t1 > t2 and t0, t1, t2 ∈ [0, 1].
Let B ∈ FP (G/H) defined by

B = {(Hx, µB (Hx)) : Hx ∈ (G/H)} .

Then the membership µB (Hx) where Hx ∈ (G/H) for all x ∈ G are given by:

µB (H) = ∨ {µA (0) , µA (2) , µA (4)} = ∨ {t0, t1, t1} = t0.

µB (H1) = ∨ {µA (1) , µA (3) , µA (5)} = ∨ {t2, t2, t2} = t2.

Therefore, B = {(H, t0) , (H1, t2)} . It can be easily verified that B ∈ F (G/H).
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Theorem 3. If H is an AG-subgroup of an AG-group G and A ∈ F(H), then Ax = Ay⇔ A∗ (x) = A∗ (y),
for all x, y ∈ G.

Proof. Let Ax = Ay, for all x, y ∈ G. This implies that

µA(hx−1) = µA(hy−1) for all h ∈ H, (4.1)

putting h = y in Eq (4.1), we get

µA(yx−1) = µA(e)
⇒ yx−1 ∈ A∗

(
by Definition (2.1)

)
⇒

(
yx−1

)
x ∈ A∗(x)

⇒
(
xx−1

)
y ∈ A∗(x) (by the left invertive law)

⇒ y ∈ A∗(x).

Therefore, A∗(y) ⊆ A∗(x).
Again putting h = x in Eq (4.1), we get

µA(xx−1) = µA(xy−1)
⇒ µA(xy−1) = µA(e)
⇒ xy−1 ∈ A∗

(
by Definition 2.1

)
⇒

(
xy−1

)
y ∈ A∗(y)

⇒
(
yy−1

)
x ∈ A∗(y) (by the left invertive law)

⇒ x ∈ A∗(y).

This implies that A∗(x) ⊆ A∗(y). Thus A∗(y) ⊆ A∗(x) ⊆ A∗(y). Hence, A∗(x) = A∗(y).
Conversely, let

A∗(x) = A∗(y)⇒ A∗(x) · A∗(y−1) = A∗(y) · A∗(y−1)

⇒A∗
(
xy−1

)
= A∗

(
yy−1

)
⇒ A∗

(
xy−1

)
= A∗ (e) = A∗ ⇒ xy−1 ∈ A∗.

Now for any x, y ∈ G, and h ∈ H, it follows that

µA(hx−1) = µA(h((y−1y)x−1))
= µA(h((x−1y)y−1))

(
by the left invertive law

)
= µA((x−1y)(hy−1))

(
by Lemma 1-(iii) [34]

)
≥ µA(x−1y) ∧ µA(hy−1) (A ∈ F(H))

= µA((xy−1)−1) ∧ µA(hy−1)
(
by Lemma 1-(ix) [34]

)
= µA(xy−1) ∧ µA(hy−1) (A ∈ F(H))

= µA(e) ∧ µA(hy−1)
(
by Definition 2.1, as xy−1 ∈ A∗

)
= µA(hy−1).

(
by Proposition 1

)
This implies that µA(hx−1) ≥ µA(hy−1).

Similar, we can show that µA(hy−1) ≥ µA(hx−1).
Consequently, µA(hx−1) = µA(hy−1). This implies that Ax = Ay (by definition of cosets). �
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Theorem 4. If H ≤ G and A ∈ FN(H) such that Ax = Ay. Then µA(x) = µA(y), for all x, y ∈ G.

Proof. Let x, y ∈ G such that

Ax = Ay⇔ A∗ (x) = A∗ (y) (by Theorem 3)

⇒A∗ (x) · A∗
(
y−1

)
= A∗ (y) · A∗

(
y−1

)
⇒A∗

(
xy−1

)
= A∗

(
yy−1

)
⇒A∗

(
xy−1

)
= A∗ (e) = A∗

⇒xy−1 ∈ A∗.

Therefore,

µA(y) = µA(y−1) = µA

((
x−1y−1

) (
x−1

)−1
)

(µA ∈ FN(H))

= µA

((
x−1y−1

)
x
)

= µA

((
xy−1

)
x−1

) (
by the left invertive law

)
≥ µA

(
xy−1

)
∧ µA

(
x−1

)
= µA(e) ∧ µA(x)

(
by Definition 2.1, as xy−1 ∈ A∗

)
= µA(x)

(
by Proposition 1

)
⇒ µA(y) ≥ µA(x).

Similarly, we can show that µA(x) ≥ µA(y). This implies that µA(x) ≥ µA(y) ≥ µA(x). Hence,
µA(x) = µA(y). �

Proposition 2. If H ≤ G and A ∈ FN(H). Then (Ax) (xh) = (Ax) (hx) = µA(h) for any x ∈ G and
h ∈ H.

Proof. Using definition of fuzzy cosets of H in G with respect to A ∈ F(H), for any x ∈ G and h ∈ H,

(Ax) (xh) = µA

(
(xh) x−1

)
= µA(h). (as A ∈ FN(H))

Also

(Ax) (hx) = µA

(
(hx) x−1

)
= µA

((
x−1x

)
h
)

(by the left invertive law)
= µA (eh) = µA (h) .

Hence (Ax) (xh) = (Ax) (hx) = µA(h), for all x ∈ G and h ∈ H. �

5. Fuzzy homomorphism of AG-groups

Definition 6. (Extension Principle) Let X and Y be any two non-empty sets, and f is a function from
X into Y . Let A ∈ FP(X) and B ∈ FP(Y), define the fuzzy subsets f (A) ∈ FP(Y) and f −1(B) ∈ FP(X),
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for all y ∈ Y , by

( f (A)) (y) =

∨{µA(x) : x ∈ X, f (x) = y} if f −1(y) , ∅,
0 otherwise

and for all x ∈ X, (
f −1(B)

)
(x) = µB( f (x)),

here f (A) is called the image of µ under f and f −1(B) is called the pre-image (or the inverse image) of
B under f .

In the following some important results on fuzzy homomorphism from AG-groups G into G′ are
discussed.

Theorem 5. Let A ∈ F(G) and G′ be an AG-group. Suppose f is a homomorphism of G into G′. Show
that f (A) ∈ F(G′).

Proof. Here we have two cases:

(1) Let u, v ∈ G′. Suppose either u < f (G) or v < f (G) or both u, v < f (G). Then

( f (A)) (u) ∧ ( f (A)) (v) = 0 ≤ ( f (A)) (uv). (by De f inition 6)

Now assume that u < f (G). Then u−1 < f (G). Thus

( f (A)) (u) = 0 = ( f (A)) (u−1).

Hence f (A) ∈ F(G′).
(2) Now suppose u, v ∈ f (G), then there exist x, y ∈ G such that u = f (x) and v = f (y). Then (by

Definition 6)

( f (A)) (uv) = ∨{µA(z) : z ∈ G, f (z) = uv}

≥ ∨{µA(xy) : x, y ∈ G, f (x) = u, f (y) = v}

≥ ∨{µA(x) ∧ µA(y) : x, y ∈ G, f (x) = u, f (y) = v}

≥ (∨{µA(x) : x ∈ G, f (x) = u}) ∧
(∨{µA(y) : y ∈ G, f (y) = v})

= ( f (A)) (u) ∧ ( f (B)) (v).

Also

( f (A)) (u−1) = ∨{µA(w) : w ∈ G, f (w) = u−1}

= ∨{µA(w−1) : w ∈ G, f
(
w−1

)
= u} = ( f (A)) (u).

Hence f (A) ∈ F(G′).

�
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Theorem 6. Let B ∈ F(G′) of an AG-group G′ and f is a homomorphism from G into G′. Show that
f −1 (B) ∈ F(G).

Proof. Suppose x, y ∈ G. Then (by Definition 6)(
f −1(B)

)
(xy) = µB ( f (xy))

= µB ( f (x) · f (y)) ( f is a homomorphism)
≥ µB ( f (x)) ∧ µB ( f (y)) (B ∈ F(G′))
=

(
f −1(B)

)
(x) ∧

(
f −1 (B)

)
(y).

Further, (
f −1(B)

)
(x−1) = µB

(
f (x−1)

)
= µB

(
( f (x)) −1

)
( f is a homomorphism)

= µB ( f (x)) (B ∈ F(G′))
=

(
f −1(B)

)
(x).

Hence f −1(B) ∈ F(G). �

Theorem 7. Let A ∈ FN(G) and G′ be an AG-group. If f is an epimorphism from G onto G′. Then
f (A) ∈ FN(G′).

Proof. By Theorem 5, f (A) ∈ F(G′). Now let x, y ∈ G′. Since f is onto, then f (u) = x for some
u ∈ G. Thus

( f (A))
(
(xy) x−1

)
= ∨

{
µA(z) : z ∈ G, f (z) = (xy) x−1

}
= ∨

{
µA(z) : z ∈ G, f (z) = ( f (u)y) · ( f (u))−1

}
= ∨

{
µA(z) : z ∈ G, f (u) · f (z) = f (u)

(
( f (u)y) · ( f (u))−1

)}
(by cancellation law)

= ∨
{
µA(uz) : z ∈ G, f (uz) = ( f (u)y)

(
f (u) · ( f (u))−1

)}
(by Lemma 1-(iii) [34])

= ∨ {µA(uz) : z ∈ G, f (uz) = ( f (u)y) e}
= ∨ {µA(uz) : z ∈ G, f (uz) = (ey) f (u)}

(by the left invertive law)
= ∨

{
µA(uz) : z ∈ G, f (uz) · f (u−1) = (y · f (u)) f (u−1)

}
= ∨

{
µA(uz · u−1) : z ∈ G, f (uz · u−1) =

(
f (u−1) · f (u)

)
y
}

(by the left invertive law)
= ∨

{
µA(z) : uz · u−1 ∈ G, f (z) = y

}
= ∨ {µA(z) : z ∈ G, f (z) = y}
= ( fA) (y).

Therefore, it follows that f (A) ∈ FN(G′). �

Theorem 8. Let B ∈ FN(G′) and G′ be an AG-group. If f is a homomorphism from G into G′. Then
f −1 (B) ∈ FN(G).
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Proof. By Theorem 6, f −1 (B) ∈ F(G). Now let x, y ∈ G. Then(
f −1(B)

) (
xy · x−1

)
= µB

(
f
(
xy · x−1

))
= µB

(
f (xy) · f (x−1)

)
= µB

(
( f (x) · f (y)) · ( f (x))−1

)
( f is a homomorphism)

≥ µB ( f (y)) (B ∈ F(G′))
=

(
f −1(B)

)
(y).

Therefore, it follows that f −1 (B) ∈ FN(G). �

Theorem 9. For any H ≤ G, if A ∈ FN(H). Then the following assertions hold:

(1) G/A � G/A∗;
(2) If B ∈ FP (G/A), defined by B (Ax) = µA (x) for all x ∈ G, then B ∈ FN (G/A).

Proof. Let H ≤ G and A ∈ FN(H).

(1) Both G/A and G/A∗ are AG-groups by Theorem 1. Define a mapping φ : G/A→ G/A∗ by

φ(Ax) = A∗x for all x ∈ G.

By Theorem 3, φ is an isomorphism, and Ax · Ay = A (xy) and A∗x · A∗y = A∗ (xy) holds for all
x, y ∈ G.

(2) Let B ∈ FP (G/A) be defined by

B(Ax) = µA(x) for all x ∈ G. (5.1)

We show that B ∈ FN (G/A) . For all x, y ∈ G,

B (Ax · Ay) = B (A (xy)) = µA(xy)
(
by Eq 5.1

)
≥ µA(x) ∧ µA(y) (A ∈ NF(H)) = B (Ax) ∧ B (Ay) ,

(
by Eq 5.1

)
and

B
(
(Ax)−1

)
= B

(
Ax−1

)
= µA

(
x−1

)
≥ µA (x) = B (Ax) .

Hence B ∈ F (G/A).
Next we show that B ∈ FN (G/A). For x, y ∈ G,

B
(
(Ax · Ay) · (Ay)−1

)
= B

(
A (xy) · Ay−1

)
⇒ B

(
(Ax · Ay) · (Ay)−1

)
= B

(
A

(
(xy) y−1

))
= µA

(
(xy) y−1

) (
by Eq 5.1

)
= µA(y) (A ∈ FN(H)) = B(Ay).

(
by Eq 5.1

)
Hence B ∈ FN (G/A).

�

Theorem 10. Let H ≤ G and A ∈ FN(H). Then B ∈ FP (G/A∗) defined by B(A∗x) = µA(x) for all
x ∈ G is a fuzzy normal AG-subgroup in G/A∗.
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Proof. Let H ≤ G and A ∈ FN(H). Let B ∈ FP (G/A∗) defined by B(A∗x) = µA(x). We will show that
B ∈ FN (G/A∗). First we will show that the mapping µB : G/A∗ → [0, 1] is well-defined.

For any x ∈ G we have

A∗x = A∗y
⇒ (A∗x) y−1 = (A∗y) y−1

⇒
(
y−1x

)
A∗ = (y−1y)A∗

(
by the left invertive law

)
⇒ (y−1x)A∗ = eA∗ = A∗
⇒ y−1x ∈ A∗

(
by the definition of cosets in AG-groups

)
⇒ µA

(
y−1x

)
= µA(e)

(
by Definition 2.1

)
⇒ µA

(
xy−1

)
= µA(e) (as A ∈ F(H))

⇒ µA

((
xy−1

)
y
)

= µA(y)
⇒ µA

((
yy−1

)
x
)

= µA(y)
(
by the left invertive law

)
⇒ µA(x) = µA(y)
⇒ B(A∗x) = B(A∗y).

(
by definition

)
This implies that the mapping µB is well defined.

Now we show that B is fuzzy AG-subgroup of G/A∗. Let A∗x and A∗y be any arbitrary elements in
G/A∗. Then

B (A∗x · A∗y) = B (A∗ (xy))
(
by the definition of fuzzy cosets

)
= µA(xy)

(
by the definition of B

)
≥ µA(x) ∧ µA(y)
= B (A∗x) ∧ B (A∗y)

(
by the definition of B

)
and

B
(
(A∗x)−1

)
= B

(
A∗x−1

) (
by the definition of cosets

)
= µA

(
x−1

)
= µA(x) = B (A∗x) .

This implies that B is fuzzy AG-subgroup of G/A∗.
Next we show that B is a fuzzy normal AG-subgroup of G/A∗. For any A∗x and A∗y in G/A∗,

B
(
(A∗x · A∗y) · (A∗x)−1

)
= B

(
A∗ (xy) ·

(
A∗x−1

))
= B

(
A∗

(
(xy) x−1

))
= µA

(
(xy) x−1

)
= µA(y) (A ∈ FN(H)) = B (A∗y) .

Hence B ∈ FN (G/A∗). �

Theorem 11. Let H ≤ G and A ∈ F(G). Define a mapping θ : G → G/A as follows:

θ(x) = Ax, for all x ∈ G.

Then θ is homomorphism with kernel A∗x.

Proof. Since θ(xy) = A (xy) = Ax · Ay = θ(x) · θ(y) for all x, y ∈ G, θ is homomorphism. Further,
kernel of θ consists of all x ∈ G for which

Ax = Ae
⇔ µA (x) = µA (e) , (by Theorem 4)
⇔ x ∈ A∗.

Thus Ker θ = A∗. �
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Remark 4. Such a homomorphism exists for every fuzzy AG-subgroup A of H in G and is called natural
homomorphism from G onto G/A.

Definition 7. Let A ∈ F(G), and θ be a homomorphism from G into G/A. Then Ker θ = {x ∈ G :
Ax = Ae} = {x ∈ G : A∗x = A∗e}.

In the following, we introduce fuzzy Lagrange’s Theorem for AG-groups of finite order.

6. Fuzzy Lagrange’s theorem

Theorem 12. (Fuzzy Lagrange’s Theorem for Finite AG-group): Let G be a finite AG-group, H an
AG-subgroup of G and A ∈ F(H). Then the index of H in G with respect to A divides the order of G.

Proof. It follows from Theorem 11 that there is a homomorphism θ from G onto G/A, the set of all
fuzzy cosets of A, defined in (11). Let H be an AG-subgroup of G defined by H = {x ∈ G : Ax = Ae}.
Let x ∈ H, then Ax = Ae ⇔ A∗x = A∗e (by Theorem 3). Therefore H = {x ∈ G : A∗x = A∗e}. Now G
is a disjoint union of the cosets of an AG-group G with respect to H, i.e.

G = (H = Hx1) ∪ Hx2 ∪ · · · ∪ Hxk, (6.1)

where x1 ∈ H and xi ∈ (G − H), for all 1 < i ≤ k. Then we show that corresponding to each
Hxi; 1 ≤ i ≤ k, given in (6.1), there is a fuzzy coset belonging to G/A, and further this correspondence
is one-one. To see this, consider any coset Hxi for any h ∈ H, ψ(hxi) = A (hxi) = Ah · Axi = Ae · Axi =

A (exi) = Axi. Thus ψ maps each element of Hxi into the fuzzy cosets Axi.

Next we show that ψ is well-defined. Consider Hxi = Hx j for each i, j where 1 ≤ i ≤ k and 1 ≤
j ≤ k. Then

x−1
j xi ∈ H

(
cosets in AG-groups

)
⇒ A

(
x−1

j xi

)
= Ae⇒ A∗

(
x−1

j xi

)
= A∗e

(
by Theorem 3

)
⇒ A∗

(
x−1

j xi

)
· A∗

(
x−1

i

)
= A∗e · A∗

(
x−1

i

)
⇒ A∗

((
x−1

j xi

) (
x−1

i

))
= A∗

(
e
(
x−1

i

))
⇒ A∗

((
x−1

i xi

) (
x−1

j

))
= A∗

(
x−1

i

) (
by left invertive law

)
⇒ A∗

(
x−1

j

)
= A∗

(
x−1

i

)
⇒ A∗ (xi) = A∗

(
x j

)
⇒ Axi = Ax j

(
by Theorem 3

)
⇒ ψ(Hxi) = ψ(Hx j).

Thus ψ is well-defined.
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Further, we show that ψ is one-one, for each i, j where 1 ≤ i ≤ k and 1 ≤ j ≤ k. Consider

ψ(Hxi) = ψ(Hx j)
Axi = Ax j

⇒ A∗ (xi) = A∗
(
x j

) (
by Theorem 3

)
⇒ A∗

(
x−1

i

)
= A∗

(
x−1

j

) (
cosets in AG-groups

)
⇒ A∗e · A∗

(
x−1

i

)
= A∗e · A∗

(
x−1

j

)
⇒ A∗

(
ex−1

i

)
= A∗

(
ex−1

j

)
⇒ A∗

(
ex−1

i

)
= A∗

((
x−1

i xi

)
x−1

j

)
⇒ A∗

(
ex−1

i

)
= A∗

((
x−1

j xi

)
x−1

i

)
⇒ A∗

((
x−1

j xi

)
x−1

i

)
= A∗

(
ex−1

i

)
⇒ A∗

(
x−1

j xi

)
= A∗e

⇒ A
(
x−1

j xi

)
= Ae

⇒
(
x−1

j xi

)
∈ H

⇔ Hxi = Hx j. (for each i and j where 1 ≤ i ≤ k and 1 ≤ j ≤ k) .

From the above discussion, it is now clear that the number of distinct cosets of H (index) in G equals
the number of fuzzy cosets of A, which is a divisor of the order of G. Hence we conclude that the index
of H in G with respect to A also divides the order of G. �

7. Conclusions

In this paper, a study of fuzzy AG-subgroups of AG-groups is initiated. Fuzzy cosets, quotient
AG-subgroups relative to fuzzy AG-subgroups and fuzzy quotient AG-subgroups are defined, various
notions and results are provided. Fuzzy Lagrange’s theorem for finite AG-groups is stated and proved.
The results in this paper are among the very few where non-associative fuzzy algebraic structures have
been studied.
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