The complex anti-fuzzy set (CAFS) is an extension of the traditional anti-fuzzy set with a wider range for membership function beyond real numbers to complex numbers with unit disc aims to address the uncertainty of data. The complex anti-fuzzy set is more significant because it provides two dimensional information and versatile representation of vagueness and ambiguity of data. In terms of the characteristics of complex anti-fuzzy sets, we proposed the concept of $ (\epsilon, \delta) $-CAFSs that offer a more comprehensive representation of the uncertainty of data than CAFSs by considering both the magnitude and phase of the membership functions and explain the $ \left(\epsilon, \delta \right) $-complex anti fuzzy subgroups (CAFS) in the context of CAFSs. Moreover, we showed that everyCAFSGis a $ (\epsilon, \delta) $-CAFSG. Also, we used this approach to define $ (\epsilon, \delta) $-complex anti-fuzzy(CAF) cosets and $ (\epsilon, \delta) $-CAF normal subgroups of a certain group as well as to investigate some of their algebraic properties. We elaborated the $ (\epsilon, \delta) $-CAFSG of the classical quotient group and demonstrated that the set of all $ (\epsilon, \delta) $-CAF cosets of such a particular CAFs normal subgroup formed a group. Furthermore, the index of $ \left(\epsilon, \delta \right) $-CAFSG was demonstrated and $ (\epsilon, \delta) $-complex anti fuzzification of Lagrange theorem corresponding to the Lagrange theorem of classical group theory was briefly examined.
Citation: Arshad Ali, Muhammad Haris Mateen, Qin Xin, Turki Alsuraiheed, Ghaliah Alhamzi. $ (\epsilon, \delta) $-complex anti fuzzy subgroups and their applications[J]. AIMS Mathematics, 2024, 9(5): 11580-11595. doi: 10.3934/math.2024568
The complex anti-fuzzy set (CAFS) is an extension of the traditional anti-fuzzy set with a wider range for membership function beyond real numbers to complex numbers with unit disc aims to address the uncertainty of data. The complex anti-fuzzy set is more significant because it provides two dimensional information and versatile representation of vagueness and ambiguity of data. In terms of the characteristics of complex anti-fuzzy sets, we proposed the concept of $ (\epsilon, \delta) $-CAFSs that offer a more comprehensive representation of the uncertainty of data than CAFSs by considering both the magnitude and phase of the membership functions and explain the $ \left(\epsilon, \delta \right) $-complex anti fuzzy subgroups (CAFS) in the context of CAFSs. Moreover, we showed that everyCAFSGis a $ (\epsilon, \delta) $-CAFSG. Also, we used this approach to define $ (\epsilon, \delta) $-complex anti-fuzzy(CAF) cosets and $ (\epsilon, \delta) $-CAF normal subgroups of a certain group as well as to investigate some of their algebraic properties. We elaborated the $ (\epsilon, \delta) $-CAFSG of the classical quotient group and demonstrated that the set of all $ (\epsilon, \delta) $-CAF cosets of such a particular CAFs normal subgroup formed a group. Furthermore, the index of $ \left(\epsilon, \delta \right) $-CAFSG was demonstrated and $ (\epsilon, \delta) $-complex anti fuzzification of Lagrange theorem corresponding to the Lagrange theorem of classical group theory was briefly examined.
[1] | R. Batra, H. D. Tran, B. Johnson, B. Zoellner, P. A. Maggard, J. L. Jones, et al., Search for Ferroelectric Binary Oxides: Chemical and Structural Space Exploration Guided by Group Theory and Computations, Chem. Mater., 32 (2020), 3823–3832. http://doi.org/10.1021/acs.chemmater.9b05324 doi: 10.1021/acs.chemmater.9b05324 |
[2] | N. B. Melnikov, B. I. Reser, Group Theory and Quantum Mechanics, In: Space Group Representations: Theory, Tables and Applications, Cham: Springer, 2023,115–126. |
[3] | A. Si, S. Das, S. Kar, Picture fuzzy set-based decision-making approach using Dempster–Shafer theory of evidence and grey relation analysis and its application in COVID-19 medicine selection, Soft Comput., 27 (2023), 3327–3341. https://doi.org/10.1007/s00500-021-05909-9 doi: 10.1007/s00500-021-05909-9 |
[4] | C. Xu, G. Zhu, Intelligent manufacturing lie group machine learning: Real-time and efficient inspection system based on fog computing, J. Intell. Manuf., 32 (2021), 237–249. |
[5] | I. Otay, C. Kahraman, Fuzzy sets in earth and space sciences, In: Fuzzy Logic in Its 50th Year: New Developments, Directions and Challenges, Cham: Springer, 2016,161–74. |
[6] | T. Akitsu, Category Theory in Chemistry, Compounds, 3 (2023), 334–335. http://doi.org/10.3390/compounds3020024 doi: 10.3390/compounds3020024 |
[7] | R. Laue, T. Grüner, M. Meringer, A. Kerber, Constrained generation of molecular graphs, DIMACS Ser. Discrete Math. Theor. Comput. Sci., 69 (2005), 319. |
[8] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[9] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5 doi: 10.1016/0022-247X(71)90199-5 |
[10] | A. K. Ray, On product of fuzzy subgroups, Fuzzy Sets Syst., 105 (1999), 181–183. http://doi.org/10.1016/S0165-0114(98)00411-4 doi: 10.1016/S0165-0114(98)00411-4 |
[11] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. |
[12] | R. Biswas, Intuitionistic fuzzy subgroup, Math. Forum, 10 (1989), 37–46. |
[13] | P. K. Sharma, Homomorphism of intuitionistic fuzzy groups, Int. Math. Forum, 6 (2011), 3169–3178. |
[14] | P. K. Sharma, Intuitionistic fuzzy groups, IJDWM, 1 (2011), 86–94. |
[15] | M. Gulzar, D. Alghazzawi, M. H. Mateen, N. Kausar, A certain class of t-intuitionistic fuzzy subgroups, IEEE Access, 8 (2020), 163260–163268. http://doi.org/10.1109/ACCESS.2020.3020366 doi: 10.1109/ACCESS.2020.3020366 |
[16] | K. D. Supriya, R. Biswas, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets Syst., 117 (2001), 209–213. http://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8 |
[17] | F. L. Deng, Multiattribute decision making models and methods using intuitionistic fuzzy sets, J. Comput. Syst. Sci., 70 (2005), 73–85. http://doi.org/10.1016/j.jcss.2004.06.002 doi: 10.1016/j.jcss.2004.06.002 |
[18] | M. K. Abdelmonem, S. Mohamed, O. Manar, Intuitionistic fuzzy set and Its Application In Corona Covid-19, Comput. Appl. Math., 9 (2020), 146–154. http://doi.org/10.11648/j.acm.20200905.11 doi: 10.11648/j.acm.20200905.11 |
[19] | R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets Syst., 44 (1990), 121–124. https://doi.org/10.1016/0165-0114(90)90025-2 doi: 10.1016/0165-0114(90)90025-2 |
[20] | S. Hoskova-Mayerova, M. Al Tahan, Anti-fuzzy multi-ideals of near ring, Mathematics, 9 (2021), 494–506. http://doi.org/10.3390/math9050494 doi: 10.3390/math9050494 |
[21] | F. A. Azam, A. A. Mamun, F. Nasrin, Anti fuzzy ideal of ring, Ann. Fuzzy Math. Inform., 5 (2013), 349–360. |
[22] | C. D. Gang, L. S. Yun, Fuzzy factor rings, Fuzzy Sets Syst., 94 (1998), 125–127. |
[23] | K. H. Kim, Y. B. Jun, Anti fuzzy R-subgroups of near rings, Sci. Math., 2 (1999), 471–153. |
[24] | K. H. Kim, Y. B. Jun, Y. H. Yon, On anti fuzzy ideals in near rings, Iran. J. Fuzzy Syst., 2 (2005), 71–80. |
[25] | P. K. Sharma, $\alpha$-Anti fuzzy subgroups, Int. Rev. Fuzzy Math., 7 (2012), 47–58. |
[26] | A. Razaq, G. Alhamzi, A. Razzaque, H. Garg, A Comprehensive Study on Pythagorean Fuzzy Normal Subgroups and Pythagorean Fuzzy Isomorphisms, Symmetry, 14 (2022), 2084. http://doi.org/10.3390/sym14102084 doi: 10.3390/sym14102084 |
[27] | A. Razaq, G. Alhamzi, On Pythagorean fuzzy ideals of a classical ring, AIMS Mathematics, 8 (2023), 4280–4303. http://doi.org/10.3934/math.2023213 doi: 10.3934/math.2023213 |
[28] | L. Xiao, G. Huang, W. Pedrycz, D. Pamucar, L. Martínez, G. Zhang, A q-rung orthopair fuzzy decision-making model with new score function and best-worst method for manufacturer selection, Sciences, 608 (2022), 153–177. http://doi.org/10.1016/j.ins.2022.06.061 doi: 10.1016/j.ins.2022.06.061 |
[29] | P. K. Sharma, $(\alpha, \beta)$-Anti fuzzy subgroups, IJFMS, 3 (2013), 61–74. |
[30] | J. Wan, H. Chen, T. Li, Z. Yuan, J. Liu, W. Huang, Interactive and Complementary Feature Selection via Fuzzy Multigranularity Uncertainty Measures, IEEE Trans. Cybern., 53 (2023), 1208–1221. http://doi.org/10.1109/TCYB.2021.3112203 doi: 10.1109/TCYB.2021.3112203 |
[31] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2012), 450–461. http://doi.org/10.1109/91.995119 doi: 10.1109/91.995119 |
[32] | D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE Trans. Fuzzy Syst., 11 (2003), 171–186. http://doi.org/10.1109/TFUZZ.2003.814832 doi: 10.1109/TFUZZ.2003.814832 |
[33] | A. Alkouri, A. R. Salleh, Complex Atanassov's intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515 |
[34] | A. Alkouri, A. R. Salleh, Some operations on complex Atanassov's intuitionistic fuzzy sets, AIP Conf. Proc., 1571 (2013), 987–993. https://doi.org/10.1063/1.4858782 doi: 10.1063/1.4858782 |
[35] | M. Gulzar, D. Alghazzawi, M. H. Mateen, M. Premkumar, On some characterization of Q-complex fuzzy sub-rings, J. Math. Comput. Sci., 22 (2020), 295–305. http://doi.org/10.22436/jmcs.022.03.08 doi: 10.22436/jmcs.022.03.08 |
[36] | A. Hanan, A. A. Halimah, M. H. Mateen, P. Dragan, M. Gulzar, A Novel algebraic structure of $(\alpha, \beta)$-complex fuzzy subgroups, Entropy, 23 (2021), 992. http://doi.org/10.3390/e23080992 doi: 10.3390/e23080992 |
[37] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy soft subgroups, J. Quality Manag. Anal., 13 (2017), 17–28. |
[38] | P. K. Sharma, t-Intuitionistic fuzzy subgroups, IJFMS, 2 (2012), 233–243. |
[39] | G. Huang, L. Xiao, G. Zhang, Assessment and prioritization method of key engineering characteristics for complex products based on cloud rough numbers, Adv. Eng. Inform., 49 (2021), 101309. http://doi.org/10.1016/j.aei.2021.101309 doi: 10.1016/j.aei.2021.101309 |