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1. Introduction

Numerous applications of algebraic theory can be found not only in theoretic and practical
mathematics such as game theory, algebraic geometry, etc. but also in other scientific disciplines like
physics, genetics, and engineering. Group theory is a fundamental branch of algebra that investigates
the properties and structures of various groups. It plays a central role in various areas of mathematics,
such as physics, chemistry, and computer science, including cryptography, algebraic geometry,
algebraic number theory, harmonic analysis, etc. [1–7]. Life is filled with unpredictability, which is
impossible to avoid. This universe is also not built on accurate measurements or suppositions.
Sometimes, the classical mathematical framework of probability is unable to handle every situation.
The novel idea of fuzzy sets introduced by Zadeh [8], is briefly explained by the uncertainty,
vagueness, and ambiguity of data. A wide range of academics from other disciplines have used this
idea because it was so inspirational. By taking fuzzy sets and logic into consideration, a number of
novel theories are developed in parallel with traditional approaches. In 1970, Rosenfeld [9] proposed
the fuzzy concepts into group theory, and classified the outcomes as fuzzy subgroup. The discussion
of the fuzzy subgroups, fuzzy quotient groups, and fuzzy normal subgroups are also done in this
research work. Ray [10] pioneered the idea of cartesian product of a the fuzzy subgroups. In 1986,
Atanassov [11] published his first article on intuitionistic fuzzy (IF) sets, which is an extension of
fuzzy sets, and introduced certain operations, like subtraction, addition, composition union, and
intersection under the influence of the intuitionistic fuzzy set. Biswas introducced the IF subgroup
with basic findings [12], and Sharma investigated some fundamental results of the IF subgroup. Also,
IF homomorphism is under the influence of group theory [13, 14].

Gulzar et al. [15] established a new category of t-IF-subgroups. The explanation of the t-IF
centralizer, normalizer, and t-intuitionistic Abelian subgroups are also discussed. Intuitionistic fuzzy
set techniques have acquired importance over fuzzy set techniques in recent years throughout a
number of technical fields. The distance measurements approach is used in a variety of applications of
IF sets. Researcher have used IF sets in a variety of situations in clinical diagnosis, medical
application, etc. It plays a very important role in engineering issues, professional selection, real-life
issues, and education. In 2001, Supriya et al. [16–18] studied the Sanchez’s approach for medical
diagnosis and extended this theory with the notion of the IF set theory.

Biswas [19] presented the principle of anti-fuzzy subgroups and initiated the fundamental algebraic
structures. The fundamental results of anti-fuzzy subgroup are discussed and the relationships between
complements of fuzzy subgroup and anti-fuzzy subgroup are also addressed [20]. In 2013, Azam et al.
[21] introduced a few basic operations and structures of anti-fuzzy ideals of ring. Gang [22] introduced
the factor rings and investigated some results. In 1999, Kim and Jun [23] developed the novel idea of
anti fuzzy R-subgroups of near rings, and Kim et al. [24] initiated the anti-fuzzy ideals in near rings,
discussed basic algebraic properties, and established the relation between the near rings and anti-fuzzy
sets. Sharma [25] developed the definition of α-anti fuzzy subgroup and explored the fundamental
algebraic structure of the α-anti-fuzzy subgroup. In addition, the techniques of the α-anti-fuzzy normal
subgroups and quotient group of α-anti-fuzzy cosets are also explained. In 2022, Razaq [26] introduced
the concept of Pythagorean fuzzy normal subgroups, Pythagorean fuzzy isomorphism, and developed
the basic characteristics of Pythagorean fuzzy normal subgroups and proved the fascinating results of
Pythagorean fuzzy isomorphism. Moreover, they looked at the concept of Pythagorean fuzzy ideas and
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investigated some results [27]. Xiao et. al [28] presented the q-ROFDM model with new score function,
and the best-worst methods for manufacturer selection also discussed the fuzzy criteria weights, and
several comparisons are conducted to illustrate the developed model.

Sharma [29] applied the fundamental properties of group theory to the (α, β)-anti fuzzy set and
introduced the (α, β)-anti-fuzzy subgroup, which is an extension of the (α, β)-anti fuzzy set. They
also, demonstrated the basics of the result of the (α, β)-anti-fuzzy subgroup and certain features of
this ideology are discussed. Moreover, they investigated the homomorphic images and pre-images of
certain group. Wan et al. [30] presented the method for interactive and complementary feature selection
via fuzzy multigranularity uncertainty measures and compared them with the benchmark approaches
on several datasets.

Further, changes in the process (periodicity) of the data overlap with uncertainty in our daily lives
and ambiguity in the data. Due to the insufficiency of current hypotheses that provide explanations
for the information, data is lost during the process. Ramot et al. [31, 32] initiated a complex fuzzy set
(CFS) to deal with the problem by extending the range of the membership function from real numbers
to complex numbers with the unit disc. Because the CFS considers only the degree of membership
than the non-membering part of data entities, which also play an equal role in the decision-making
process for evaluating the system, it only gives weight to the degree of membership. However, it
is frequently difficult to describe membership degree estimation by a fuzzy set’s accurate value in
the real world. This may reflect using two-dimensional information than one in these circumstances,
when it may be simpler to reflect the vagueness and ambiguity that exist in the real world. Given that
uncertainties are uneasy to be evaluated in the complex problem of decision-making, an expansion
of the existing theories may therefore be very helpful for explaining uncertainties. To address this,
Alkouri and Salleh [33,34] examined the fundamental features of complex intuitionistic fuzzy sets and
extended the definition of CFSs to consist of complex degrees of non-membership functions.

Furthermore, Gulzar et al. [35] introduced the idea of Q-complex fuzzy subrings and covered some
of their basic algebraic features. Additionally, the examine the homomorphic image and invert image
of Q-complex fuzzy subrings, and enlarge this concept to develop the concept of the direct product of
two Q-complex fuzzy subrings. Hanan et al. [36] started the abstraction of (α, β)-CFSs and defined
(α, β)-complex fuzzy subgroups (CFSG). After that, they established that each CFSG is a (α, β)-CFSG
and defined (α, β)-complex fuzzy normal subgroups of a given group. This concept is expanded to
define (α, β)-complex fuzzy cosets, and some of their algebraic properties are examined.
The following are the motivation of this novel work.

1) Biswas [19] presented the principle of anti-fuzzy subgroups and initiated the fundamental
algebraic structures. Sharma [25] developed the definition of α-anti fuzzy subgroup and explored
the fundamental algebraic structure of α-anti-fuzzy subgroup. Sharma [29] applied the
fundamental properties of group theory to the (α, β)-anti fuzzy set and introduced (α, β)-anti-fuzzy
subgroup, which is an extension of the (α, β)-anti fuzzy set.

2) Ramot et al. [31, 32] initiated a CFS to deal with the problem by extending the range of the
membership function from real numbers to complex numbers with the unit disc. Because the CFS
considers only the degree of membership than the non-membering part of data entities, which also
play an equal role in the decision-making process for evaluating the system, it gives weight only to
the degree of membership.
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3) The proppsed method is (ε, δ)-CAFSG. is a generalized form of CAFSG. The motivation for the
recommended concept is expressed as follows: (1) To communicate a general concept such as the
(ε, δ)-CAFSG; (2) For ε = 1 and δ = 2π, the idea that we propose can be convert into a classical
CAFS. As a effective generalization of fuzzy subgroups, the (ε, δ)-CAFSGs are the subject of this
article investigation.

1.1. Objectives

1) To propose the concept of (ε, δ)-CAFSs, examine the (ε, δ)-CAFSG in the context of CAFSs and
prove that every complex fuzzy subgroup is a (ε, δ)-CAFSG.

2) To define (ε, δ)-CAF cosets and (ε, δ)-CAFNSGs of a certain group, as well as to investigate some
algebraic properties under the (ε, δ)-CAFSG. We elaborate the (ε, δ)-CAFSG of the classical
quotient group.

3) To demonstrate the index of (ε, δ)-CAFSG and (ε, δ)-complex anti-fuzzification of the Lagrange
theorem corresponding to the Lagrange theorem of classical group theory.

This paper is organized as follows: Section 1 introduces the fundamental concepts of complex anti
fuzzy sets, complex anti fuzzy subgroups, and related features. In Section 2, we construct (ε, δ)-CAFS
and (ε, δ)-CAFSG as generalizations of CAFSG. We show that any complex anti fuzzy subgroup is
also a (ε, δ)-CAFSG, and examined some of the essential aspects of these newly define CAFSGs. In
Section 3, the (ε, δ)-CAF cosets and (ε, δ)-CAFNSGs are describe and various algebraic properties
of these particular groups are investigate. Furthermore, we discuss (ε, δ)-complex anti fuzzy quotient
groups (CAFQG) and establish the quotient group with regard to (ε, δ)-CAF cosets. The indices of the
(ε, δ)-CAFSG is define and the (ε, δ)-complex anti fuzzification of Lagrange’s theorem is develop.

2. Preliminaries

We start by analyzing the fundamental idea of CAFS s and CAFS Gs, both are essential for study.

Definition 2.1. [8] If H is universal set and x is an arbitrary element of H then an anti-fuzzy set ϕ is
define as ϕ = {(x, λ), x ∈ H}, where λ is a non membership function and λ ∈ [0, 1].

Definition 2.2. [37] A CFS S of a universe set H, characterized by the degree of membership θS (l) =

νS (l)eiηS (l) and is defined as θS : l → {l ∈ H : |l| ≤ 1}, H is complex plain. Whose range is not limited
to [0 1] but extens to unit circle in complex plane, where i =

√
−1, νS (l) and ηS (l) are both real valued

including νS (l) ∈ [0, 1] and ηS (l) ∈ [0, 2π]. As for purpose of simplicity, we will employ νS (l)eiηS (l)

membership function for complex fuzzy set S .

Definition 2.3. [11] Assume that S = {(l, ρS (l)) : l ∈ H} be a anti fuzzy subset where H is a universal
set. Now the set

S π = {(l, ϑS π
(l)) : ϑS π

(l) = 2πρS (l), l ∈ G}

is called π-anti fuzzy subset.

Definition 2.4. [11] A π-anti fuzzy set S π of group G is known as π-anti fuzzy subgroup of G if the
following conditions are satisfied
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(i) S π(lm) ≤ max {S π (l) , S π (m)}, ∀ l,m ∈ G,

(ii) S π(l−1) ≤ S π(l), ∀ l,m ∈ G.

Definition 2.5. [11] Assume S =
{
(l, νS (l) eiηS (l)) : l ∈ G

}
and T =

{
(l, νT (l) eiηT (l)) : l ∈ G

}
are both

CAFS s of G. Then

(i) A CAFS S is homogeneous CAFS , if ∀ l,m ∈ G, we have νS (l) ≤ νS (m) if and only if ηS (l) ≤
ηS (m) .

(ii) A CAFS A is homogeneous complex anti fuzzy set with B, if ∀ p, q ∈ G, we have νA (p) ≤ νB (p)
if and only if ηA (p) ≤ ηB (p) .

Definition 2.6. [35] Let S =
{
(l, νS (l) eiηS (l)) : l ∈ G

}
and T =

{
(l, νT (l) eiηT (l)) : l ∈ G

}
be a CAF

subsets of set G. Then intersection and union of S and T is examined as:

(i) (S ∩ T )(l) = νS∩T (l) eiηS∩T (l)

= max
{
νS (l) eiηS (l), νS (l) eiηS (l)

}
, ∀ l ∈ L.

(ii) (S ∪ T )(l) = νS∪T (l) eiηS∪T (l)

= min
{
νS (l) eiηS (l), νS (l) eiηS (l)

}
, ∀ l ∈ L.

Definition 2.7. [11] Let S be aCAFS of group G. Then S is know as CAFS G of group G, if the
following criteria are fulfilled.

(i) νS (lm) eiηS (lm) ≤ max
{
νS (l) eiηS (l), νS (m) eiηS (q)

}
,

(ii) νS

(
l−1

)
eiηS (l−1) ≤ νS (l) eiηS (l) for all l,m ∈ G.

Definition 2.8. [11] A complex anti fuzzy set S of group G is said to be CAFNS G of group G,
if: νS (lm) eiηS (lm) = νS (ml) eiηS (ml), for all l,m ∈ G.

Definition 2.9. [25] Let S be a anti fuzzy subset of a group G. Then anti fuzzy set S ε of G is known
as ε-anti fuzzy subset of G, where ε ∈ [0, 1] and define as S ε (p) = max{S (p), 1 − ε} for all p ∈ G.
Some results:

(i) (i) Let S and T be two anti fuzzy subsets of X. Then
(S ∪ T )ε = S ε ∪ Tε .

(ii) (ii) Suppose g : L → M be a mapping and S and T be two anti fuzzy subsets of L and M
sequentially, then
(a) g−1(Tε) = (g−1(T ))ε ,
(b) g(T )ε = (g(T ))ε .

Definition 2.10. [38] Suppose S ε and S δ respectively indicate, the ε- fuzzy set and δ-anti fuzzy set of
L, where L is universal set. Then the anti fuzzy set S (ε,δ) is define by
S (ε,δ)(u)=min{u, (S ε)c(u), S δ(u)}∀u ∈ L and is called S (ε,δ)-anti fuzzy set of L due respect the fuzzy set
S, where ε, δ ∈ [0, 1] such that ε + δ ≤ 1.

Remark 2.11.
(i) S (0,1)(u)=min{(S 1)c(u), S 0(u)}=min{S c(u), 1} = 1,

(ii) S (0,1)(u)=min{(S 0)c(u), S 1(u)}=min{1, S c(u)} = 1.
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3. Algebraic attributes of (ε, δ)-complex anti fuzzy subgroups

Now this section introduces the (ε, δ)-CAFS and (ε, δ)-CAFS Gs methodology. We establish that
any complex fuzzy subgroup is also a (ε, δ)-CAFS G but the converse does not hold and we explore
certain fundamentals categorization of this phenomena.

Definition 3.1. Let S = {(l, µS (l) eiηS (l)) : l ∈ G} be CAFS of group G, for any ε ∈ [0, 1] and δ ∈

[0, 2π], such that µS (l) ≥ ε and ηS (l) ≥ δ or (νS (l) ≤ ε and ηS (l) ≤ δ). Then, the set S (ε,δ) is called
(ε, δ)-CAFS t and defined as: νS ε

(l)eiηS δ(l) = max{νS (l)eiηS δ(l), εeiδ} = max{νS (l), ε}eimax{ηS (l), δ} , where
νS ε

(l) = max{νS (l), ε} and ηS δ
(l) = max{ηS (l), δ}.

Throughout manuscript, we will focused on the non-membership function of (ε, δ)-CAFS s S (ε,δ)

and T(ε,δ) such as νS ε
(l)eiηS δ(l) and νTε (l)e

iηT δ(l), respectively.

Definition 3.2. Let S (ε,δ) and T(ε,δ) be a two (ε, δ)-CAFS s of G. Then

(i) A (ε, δ)-CAFS S (ε,δ) is homogeneous (ε, δ)-CAFS , for all l,m ∈ G, we have νS ε
(l) ≥ νS ε

(m) if
and only if ηS δ

(l) ≥ ηS δ
(m).

(ii) A (ε, δ)-CAFS S (ε,δ) is homogeneous (ε, δ)-CAFS with T(ε,δ), for all l,m ∈ G, such that νS ε
(l) ≥

νTε (l) if and only if ηS δ
(l) ≥ ηTδ(l).

In this research article, we use (ε, δ)-CAFS as homogeneous (ε, δ)-complex anti fuzzy set.

Remark 3.3. By taking the values of ε = 1 and δ = 2π in the given definition, we obtain the classical
CAFS S .

Remark 3.4. Let S (ε,δ) and T(ε,δ) be two (ε, δ)-CAFS s of group G. Then (S∩M)(ε,δ) = S (ε,δ) ∩ T(ε,δ).

Definition 3.5. Let S (ε,δ) be an (ε, δ)-CAFS of group G for ε ∈ [0, 1] and δ ∈ [0, 2π]. Then S (ε,δ) is
known as (ε, δ)-CAFS G of group G, if it satisfy the following conditions:

(i) νS ε
(lq)eiηS δ (lq) ≥ max{ νS ε

(l)eiηS δ (l), νS ε
(q)eiηS δ (q)} ,

(ii) νS ε
(l−1)eiηS δ (l−1) ≤ νS ε

(l)eiηS δ (l) for all l,m ∈ G.

Theorem 3.6. If S (ε,δ) is an (ε, δ)-CAFS G of group G, for all l,m ∈ G. Then

(i) νS ε
(l)eiηS δ (l) ≥ νS ε

(e)eiηS δ (e),

(ii) νS ε
(lm−1)eiηS δ (lm−1) = νS ε

(e)eiηS δ (e).

It suggests that νS ε
(l)eiηS δ (l) = νS ε

(m)eiηS δ (m).

The proof of this theorem is straightforward.
Now, in this theorem we show that CAFNS G is a spacial case of (ε, δ)- CAFNS G.

Theorem 3.7. Every CAFS G of the group G is also a (ε, δ)-CAFS G of G.

Proof. Assume that S be CAFSG of group G, for every l,m ∈ G. Suppose that

νS ε
(lm)eiεS δ (lm) = max{νS (lm)eiεS (lm), εeiδ}
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≤ max{max{νS (l)eiεS (l), νS (m)eiεS (m)} , εeiδ}

= max{max{νS (l)eiεS (l), εeiδ} ,

max{νS (m)eiεS (m), εeiδ} }

= max{νS ε
(l)eiεS δ (l), νS ε

(m)eiεS δ (m)} .

Further, we assume that

νS ε
(l−1)eiεS δ (l−1) = max{ νS (l−1)eiεS (l−1), εeiδ }

≤ max{ νS (l)eiεS (l), εeiδ }

= νS ε
(l)eiεS δ (l).

This established the proof.

Remark 3.8. If S (ε,δ)-CAFS G then it is not essential S is CAFS G.

Example 3.9. The Klein four group is referred by G = {e, l,m, lm}. It can be written as S = {<

e, 0.2ei π12 >, < l, 0.4ei π6 >, < m, 0.4ei π6 >, < lm, 0.3ei π7 >} is not CAFS G of G. Take ε = 0.2 and δ = π
6 .

Then, it’s simple to see νS (l)eiηS (l) > εeiδ, for all l ∈ G. Moreover, we have νS ε
(l)eiηS δ (l) = εeiδ, ∀ l ∈ G.

Therefore, νS ε
(lm)eiηS δ (lm) ≤ max{νS ε

(l)eiηS δ (l), νS ε
(m)eiηS δ (m)}, ∀l,m ∈ G. Furthermore, l−1 = l, m−1 =

m, (lm)−1 = lm. So, νS ε
(l−1)eiηS δ (l−1) ≥ νS ε

(l)eiηS δ (l). Hence, S (ε,δ) is (ε, δ)-CAFS G.

Theorem 3.10. Let S be a complex anti fuzzy set of group G such that νS (l−1)eiεS (l−1) = νS (l)eiεS (l), ∀ l ∈
G. Let εeiδ ≥ reiθ such that ε ≥ r and δ ≥ θ, where reiθ = max{νS (l)eiεS (l) : l ∈ G} and ε, r ∈ [0, 1] and
δ, θ ∈ [0, 2π]. Then S (ε,δ) is an (ε, δ)-CAFS G of G.

Proof. Note that εeiδ ≥ reiθ. Implies that max{νS (l)eiεS (l) : l ∈ G} ≤ εeiδ. This indicates
max{νS (l)eiεS (l), εeiδ} = εeiδ, for all l ∈ G. Implies that νS ε

(l)eiεS δ (l) = εeiδ.

νS ε
(lm)eiεS δ (lm) ≤ max{νS ε

(l)eiεS δ (l),

νS ε
(m)eiεS δ (m)}.

Moreover, νS (l−1)eiεS (l−1) = νS (l)eiεS (l),∀ l ∈ G.

Implies that, νS ε
(l−1)eiεS δ (l−1) = νS ε

(l)eiεS δ (l).

Hence, S (ε,δ) is (ε, δ)-CAFS G of G.

Theorem 3.11. Intersection of two (ε, δ)-CAFS Gs of G is also (ε, δ)-CAFS G of G.

Proof. Let S (ε,δ) and T(ε,δ) be two (ε, δ)-CAFS Gs of G, for any l,m ∈ G.
Consider,

ν(S∩T )ε (lm)eε(S∩T )δ (lm) = ν(S ε∩Tε )(lm)eiεS δ∩Tδ (lm)

= max{νS ε
(lm)eiεS δ (lm), νTε (lm)eiεTδ (lm)}

≤ max
{

max{νS ε
(l)eiεS δ (l), νS ε

(m)eiεS δ (m)} ,

max{νTε (l )eiεTδ (l) νTε (m)eiεTδ (m)} .

}
= max

{
max{νS ε

(l)eiεS δ (l), νTε (l)e
iεTδ (l)} ,

max{νS ε
(m)eiεTδ (m), νTε (m)eiεTδ (m)}.

}
AIMS Mathematics Volume 9, Issue 5, 11580–11595 .
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= max{ν(S ε∩Tδ)(l)e
iε(S δ∩Tδ)(l), ν(S ε∩Tδ)(m)eiε(S δ∩Tδ)(m)}

= max{ν(S∩T )ε (l)e
iε(S∩T )δ (l), ν(S∩T )ε (m)eiε(S∩T )δ (m)} .

Further,
ν(S∩T )ε (l

−1)eε(S∩T )δ (l−1) = νS ε∩Tε (l
−1)eiε(S δ∩Tδ)(l−1)

= max{νS ε
(l−1)eiεS δ (l−1), νTε (l

−1)eiεTδ (l−1)}

≤ max{νS ε
(l)eiεS δ (l), νTε (l)e

iεTδ (l)}

= ν(S∩T )ε (l)e
ε(S∩T )δ (l).

Consequently, S (ε,δ) ∩ T(ε,δ) is (ε, δ)-CAFS G of G.

Corollary 3.12. Intersection of a family of (ε, δ)-CAFS Gs of G is also (ε, δ)-CAFS G.

Remark 3.13. Union of two (ε, δ)-CAFS Gs may not be a (ε, δ)-complex anti fuzzy subgroup.

Example 3.14. Assume that a symmetric group S 4 with permutation of four
elements{(1), (2 3), (2 3 4),
(2 4 3), (3 4), (2 4), (1 2), (1 2 4), (1 2 3), (1 2 3 4), (1 2)(3 4), (1 2 4), (1 3 2), (1 3 4 2), (1 3), (1 3 4), (1 3 2 4),
(1 3)(2 4), (1 4 3 2), (1 4 2), (1 4 3), (1 4), (1 4 2 3), (1 4)(2 3)}. Define two (ε, δ)-CAFS Gs S (0.9,π/2) and
T(0.6,π/2) of S 4 for value εeiδ = 0.9eπ are delivered as:

S (0.9,π/2)(l) =

{
0.8eπ/4, if l ∈< (1 3) >
0.7eπ/6, otherwise

and

T(0.9,π/2)(l) =

{
0.9eπ/2, if l ∈< (1 3 2 4) >
0.6eπ/7, otherwise

indicates that (S (0.9,π/2) ∪ T(0.9,π/2)) (l) =


0.8eπ/4, if l∈ < (1 3 2 4) > ∩ < (1 3) >

0.7eπ/6, if l ∈< (1 3 2 4) > −e
0.6eπ/7, if l ∈< (1 3) > −e

Take l = (1 2)(3 4), m = (1 3) and lm = (1 2 3 4). Moreover, (S (0.9,π/2) ∪ T(0.9,π/2)) (l) = 0.7eπ/6.
(S (0.9,π/2) ∪ T(0.9,π/2))(l) = 0.6eπ/7 and (S (0.9,π/2) ∪ T(0.9,π/2))(lm) = 0.6eπ/7.

We can clearly observe that (S (0.9,π/2) ∪ T(0.9,π/2))(lm) � max{(S (0.9,π/2) ∪ Tt(0.9,π/2))(l), (S (0.9,π/2) ∪

T(0.9,π/2))(m)}. So, this establishes the assertion.

4. (ε, δ)-complex anti fuzzification of Lagrange’s theorem

The algebraic features of (ε, δ)-CAFNS Gs are explore in this section. We investigate (ε, δ)-CAF
cosets of (ε, δ)-CAFS Gs and create a quotient framework that focuses on these CAFNS Gs. The
(ε, δ)-CAFS G of the classical quotient group is also discussed and several key characteristics of these
CAFNS Gs are illustrated.

Definition 4.1. Suppose that S (ε,δ) be an (ε, δ)-CAFS G of group G, as ε ∈ [0, 1] and η ∈ [0, 2π]. Then
(ε, δ)-CAFS lS (ε,δ)(w) = {(w, νlS ε

(w)eiηlS η(w) ), w ∈ G} of G is known as a(ε, δ)-CAF left coset of G
examine by S (ε,δ) and is define as:

νlS ε
(w)eiηlS η (w)

= νS ε
(l−1w)eiηS η (l−1w)
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= max{νS (l−1w)eiηS (l−1w), εeiδ},∀w, l ∈ G.

In same way we explain (ε, δ)-CAF right coset S (ε,δ)w = {(w, νS ε l(w)eiηS δl(w)), w ∈ G} of of G
determine by S (ε,δ) and l also define as :
νS ε l(w)eiηS δl(w) = νS ε

(wl−1)eiηS δ
(wl−1) = max{νS (wl−1)eiηS (wl−1), εeiδ} , for all w , l ∈ G.

The next given example demonstrates the concept of (ε, δ)-CAF cosets of S (ε,δ).

Example 4.2. Take G = {(1), (1 3), (1 2)(3 4), (2 4), (1 4)(2 3),
(1 4 3 2), (1 3)(2 4), (1 2 3 4)} a symmetric group with 8 elements represent (ε, δ)-CAFS G of G only
when ε = 0.4 and δ = π/6 as follows: S (0.4,π/6)(w)

=


0.9eπ if w ∈ {(1 3)(2 4), (1)}
0.8eπ/3, if w ∈ {(1 2)(3 4), (1 4)(2 3)},
0.7eπ/5, if w ∈ {(2 4), (1 3), (1 2 3 4), (1 4 3 2)}

From the definition of cosets we have
νlS (0.4,π/6)(w)eηlS (0.4,π/6) (w)

= νS (0.4,π/6)(l
−1w)eηS (0.4,π/6) (l−1w).

Thus, (0.4, π/6)-CAF left coset of S (0.4,π/6)(w) in G for l = (2 4) as seen below: lS (0.4,π/6)(w)

=


0.9eπ if w ∈ {(1 3)(2 4), (1)}
0.8eπ/3, if w ∈ {(1 4)(2 3), (1 2)(3 4)}
0.6eπ/5, if w ∈ {(2 4), (1 4 3 2), (1 3), (1 2 3 4)}

.

In same way, (0.4, π/6)-CF right coset of S (0.4,π/6)(w) is find, for every l ∈ G.

Definition 4.3. Let S (ε,δ) be an (ε, δ)-CAFS G of group G, where ε ∈ [0, 1] and δ ∈ [0, 2π].Therefore
S (ε,δ) is known as (ε, δ)-CAFNSG of G if S (ε,δ)(lm) = S (ε,δ)(ml). Equivalently, (ε, δ)-CAFS G S (ε,δ) is
(ε, δ)-CAFNSG of group G if: S (ε,δ)l(m) = lS (ε,δ)(m), for all l, m ∈ G.

Note that each (1, 2π)-CAFNS G is a classical CAFNS G of G.

Remark 4.4. Let S (ε,δ) be an (ε, δ)-CAFNSG of the group G. Then S (ε,δ)(m−1lm) = S (ε,δ)(l), for all
l,m ∈ G.

Theorem 4.5. If S is CAFNS G of group G. Then S (ε,δ) is (ε, δ)- CAFNS G of G.

Proof. Assume that w, l arbitrary of elements of G. Consequently, we have νS (l−1w)eiηS (l−1w) =

νS (xl−1)eiηS (wl−1), This implies that, {νS (l−1w)eiηS (l−1w), εeiδ} = max{νS (wl−1)eiηS (wl−1), εeiδ}

we obtain, νlS ε
(w)eiηlS δ

(w) = νS ε l(w)eiηS δl(w). we get lS (ε,δ)(w) = S (ε,δ)l(w). Consequently, S (ε,δ) is
(ε, δ)-CAFNS G of G. In most circumstances, the converse of the following outcome is not valid. This
fact is discuss in given bellow example.

Example 4.6. Suppose G = D3 =< l,m : l3 = m2 = e, ml = l2m > be the Dihedral group. Suppose
that S be a complex anti fuzzy set of G and described as:

S =

0.5eπ/4 if w ∈< m >,

0.3eπ/8 if w << m > .
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Note that S is not a complex anti fuzzy normal subgroup of group G. For
νS (l2(lm))eiηS (l2(lm))= 0.5e

π/4
, 0.3eπ/8 = νS ((lm)l2)eiηS ((lm)l2). Now we take εeiδ = 0.6eiπ/3 , we get

νlS 0.6(w)eiηwSπ/3 = max{νS (l−1w)eiη
S (l−1w) , 0.6eiπ/3} = 0.6e

iπ
3 = max{νS (wl−1)eiη

S (wl−1) , 0.6eiπ/3}

= νS 0.6l(w)eiηS π/3(w).

Next, we show that each (ε, δ)- CAFS G of group G will be (ε, δ)- CAFNS G of group G, include
some particular values of ε and δ. The following outcomes are illustrate in this direction.

Theorem 4.7. Let S (ε,δ) be (ε, δ)-CAFS G of group G as a result εeiδ > reiθ , ε ≥ r and δ ≥ θ,
where reiθ = max{ÂµS (w)eiηS (w),∀ w ∈ G } and r, ε ∈ [0, 1] and δ, θ ∈ [0, 2π]. So S (ε,δ) be (ε, δ) −
CAFNS G of the group G.

Proof. Given that εeiδ ≥ reiθ . This implies max{νS (w)eiηS (w) : for all w ∈ G} ≤ εeiδ. This shows
νS (w)eiηS (w) ≤ εeiδ, for all w ∈ G. So, νlS ε

(w)eiηlS δ
(w) = max{νS (l−1w)eiηS (l−1w), εeiδ} = εeiδ, for any

w ∈ G. Similarly, νS ε l(w)eiηS δl(w) = max{νS (wl−1)eiηS (wl−1), εeiδ} = εeiδ. Implies that νlS ε
(w)eiηlS δ

(w) =

νS ε l(w)eiηS δl(w). Hence, it proved the result.

Theorem 4.8. Let S (ε,δ) be (ε, δ)- CAFNS G of group G. Then the set S e
(ε,δ) = {w ∈ G : S (ε,δ)(w−1) =

S (ε,δ)(e)} is normal subgroup of group G.

Proof. Obviously S e
(ε,δ) , η because e ∈ G. Let w, v ∈ S e

(ε,δ) be any elements. Consider,
νS ε

(wv)eiηS δ (wv) ≤ max{νS ε
(w)eiηS δ (w), νS ε

(v)eiηS δ (v) } = max{νS ε
(e)eiηS δ (e), νS ε

(e)eiηS δ (e)} . Implies that
νS ε

(wv)eiηS δ (wv) ≤ νS ε
(e)eiηS δ (e). However, νS ε

(wv)eiηS δ (wv) ≥ νS ε
(e)eiηS δ (e). Therefore,

νS ε
(wv)eiηS δ (wv) = νS ε

(e)eiηS δ (e). It implies that S (ε,δ)(w−1) = S (ε,δ)(e). It implies that wv ∈ S e
(ε,δ). Further,

νS ε
(v−1)eiηS δ (v−1) ≤ νS ε

(v)eiηS δ (v) = νS ε
(e)eiηS δ (e). But νS ε

(w)eiηS δ (w) ≥ νS ε
(e)eiηS δ (e). Thus S e

(ε,δ) is subgroup

of group G. Moreover, let w ∈ S e
(ε,δ)and ∈ G. We have νS (ε,δ)(v

−1wv)eiηS (ε,δ) (v−1wv)

= νS (ε,δ)(w)eiηS (ε,δ) (w). It implies that y−1wv ∈ S e
(ε,δ). Hence, S e

(ε,δ) is a normal subgroup.

Theorem 4.9. Assume that S (ε,δ) be an (ε, δ)- CAFNS G of group G. Then

(i) lS (ε,δ) = mS (ε,δ) if and only if l−1m ∈ S e
(ε,δ),

(ii) S (ε,δ)l = S (ε,δ) m if and only if lm−1
∈ S e

(ε,δ).

Proof. For any l,m ∈ G, we have lS (ε,δ) = mS (ε,δ). Assume that,
νS ε

(l−1m)eiηS δ (l−1m) = max{νS (l−1m)eiηS (l−1m), εeiδ}

= max{νlS (m)eiηlS (m), εeiδ}

= νlS ε
(m)eiηlS δ (m)

= νmS ε
(m)eiηmS δ (m)

= max{νS (m−1m)eiηδ(m−1m), εeiδ}

= max{νS (e)eiηS (e), εeiδ}

= νS ε
(e)eiηS δ (e).

Therefore, l− 1m ∈ S e
(ε,δ).

Conversely, let l−1m ∈ S e
(ε,δ) then νS ε

(l−1m)eiηS δ (l−1m) = νS ε
(e)eiηS δ (e).
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Consider
νlS ε

(a)eiηlS δ (a) = max{νS (l−1a)eiηS (l−1a), εeiδ}

= νS ε
(l−1a)eiηS (l−1a)

= νS ε
(l−1m)(m−1a)eiηS δ (l−1m)(m−1a)

≤ max{νS ε
(l−1m)eiηS δ (l−1m), νS ε

(m−1a)eiηS δ (m−1a)}

= max{νS ε
(e)eiηS δ (e), νS ε

(m−1a)eiηS δ (m−1a)}

= νS ε
(m−1a)eiηS δ (m−1a)

= νmS ε
(a)eiηmS δ (a).

Interchange the role of l and we get
νmS ε

(a)eiηmS δ (a)≤νlS ε
(a)eiηlS δ (a). Thus, νlS ε

(a)eiηlS δ (a) = νmS ε
(a)eiηmS δ (a).

(ii) In similar way, this can be present as part (i).

Theorem 4.10. Let S (ε,δ) be an (ε, δ)-CAFNS G of group G and l,m, a, b arbitrary elements of G. If
lS (ε,δ) = aS (ε,δ) and mS (ε,δ) = bS (ε,δ), then lmS (ε,δ) = abS (ε,δ).

Proof. Given that lS (ε,δ) = aS (ε,δ) and mS (ε,δ) = bS (ε,δ). Implies that l−1a,m−1b ∈ S e
(ε,δ).

Consider, (lm)−1(ab) = m−1(l−1a)b = m−1(l−1a)(lm−1)b = [m−1(l−1a)(m)](m−1b). As S e
(ε,δ) is normal

subgroup of G. Thus, (lm)−1(ab) ∈ S e
(ε,δ). Similarly, lmS (ε,δ) = abS (ε,δ). As a result of this, we can say

that (ε, δ)-CAFQG along to classical quotient group.

Theorem 4.11. Assume that G/S (ε,δ) = {lS (ε,δ) : l ∈ G} be the collection of all (ε, δ)-CF cosets of
(ε, δ)-CAFNS G S (ε,δ) of G. Consequently, the set action of the binary operator is well define G/S (ε,δ)

and is present as lS (ε,δ) ∗ mS (ε,δ) = lmS (ε,δ) for all l, m ∈ G.

Proof. We have lS (ε,δ) = mS (ε,δ) and aS (ε,δ) = bS (ε,δ), for arbitrary a , b, l, m ∈ G. Assume that g ∈ G
be arbitrary element, so

[lS (ε,δ)aS (ε,δ)] (g) = (laS (ε,δ)(g)) = νlaS ε
(g)eiηlaS δ

(g).

Consider,
νlaS ε

(g)eiηlaS δ (g) = max{νlaS (g)eiηlaS (g), εeiδ}

= max{νS ((la)−1g)eiηS ((la)−1g), εeiδ}

= max{νS (a−1(l−1g))eiηS (a−1(l−1g)), εeiδ}

= νaS ε
(l−1g)eiηaS δ

(l−1g)

= νbS ε
(l−1g)eiηbS δ

(l−1g)

= max{νS (b−1(l−1g))eIηS (b−1(l−1g)), εeiδ}

= max{νS (l−1(gb−1)), εeiδ}

= νlS ε
(gb−1)eiηlS δ

(gb−1)

= νlS ε
(gb−1)eiηmS δ

(gb−1)

= max{νS (m−1(gb−1))eiηS (m−1(gb−1)), εeiδ}
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= max{νS (m−1g)b−1eiηS (m−1g)b−1
, εeiδ}

= max{νS (b−1m−1(g))eIηS (b−1m−1(g)), εeiδ}

= max{νS ((mb)−1(g))eIηS ((mb)−1(g)), εeiδ}

= νqbS ε
(g)eiηqbS δ

(g).

Hence, the operation ∗ on G/S (ε,δ) is well defined. It can be observed that ∗ operation is a closed
and associative on set G/S (ε,δ). Moreover,
νS ε

eiηS δ *νlS ε
eiηlS δ =νeS ε

eiηeS δ * νlS ε
eiηlS δ = νlS ε

eiηlS δ = νlS ε
eiηlS δ =⇒ νS ε

eiηS is neutral element of
G/S (ε,δ). Obviously, the inverse of every entity of G/S (ε,δ) exist if νlS ε

eiηlS δ ∈ G/S (ε,δ), so there is a
element, νl−1S ε

eiηl−1S δ ∈ G/S (ε,δ) such that νl−1 pS ε
eiηl−1lS δ = νS ε

eiηS δ . As a consequence, G/S (ε,δ) is a
group. The group G/S (ε,δ) is known as quotient group of the G by S (ε,δ).

Lemma 4.12. Assume that a natural homomorphism from group G onto G/S (ε,δ) is f : G to G/S (ε,δ)

and the rule specifies, f (l) = lS (ε,δ) with kernel f =S e
(ε,δ).

Proof. Suppose an arbitrary elements l, m taken from group G, then f (lm) = lmS (ε,δ) = νlmS ε
eiηlmS δ =

νlS ε
eiηlS δ ∗ νmS ε

eiηmS δ = lS (ε,δ) ∗ mS (ε,δ) = f (l) ∗ s(m). Hence f is a homomorphism and f is an onto
mapping.

Then, Ker f = {l ∈ G : f (l) = eS (ε,δ)}

= {l ∈ G : lS (ε,δ) = eS (ε,δ) }

= {l ∈ G : le−1 ∈ S e
(ε,δ)}

= {l ∈ G : l ∈ S e
(ε,δ)}

= S e
(ε,δ).

As a result of this, we introduce (ε, δ)-CAFG of quotient group generates by normal subgroup S e
ε,δ.

Theorem 4.13. Let S e
ε,δ be normal subgroup of G. If S (ε,δ) = {(l, νS ε

(l)eiηS δ
(l)) : l ∈ G} is (ε, δ)-CAFS G.

Then the (ε, δ)-complex anti fuzzy set S (ε,δ) = {(lS e
(ε,δ), νS ε

(lS e
(ε,δ))e

iηS δ
(lS e

(ε,δ))) : l ∈ G} of G/S e
(ε,δ) is also a

(ε, δ)-CAFS G of G/S e
ε,δ. Where νS ε

(lS e
(ε,δ))e

iηS δ
(lS e

(ε,δ)) = min{νS ε
(la)eiηS δ (la) : a ∈ S e

(ε,δ)} .

Proof. First we shall prove that νS ε
(lS e

(ε,δ))e
iηS δ

(mS e
(ε,δ)) is well defined. Let lS e

ε,δ = mS e
ε,δ then m = la, for

some a ∈ S e
ε,δ. Now νS ε

(mS e
(ε,δ))e

iηS δ
(mS e

ε,δ) = min{νS ε
(mb)eiηS δ

(mb) : b ∈ S e
(ε,δ)}

= min{νS ε
(lab)eiηS δ

(lab) : c = ab ∈ S e
(ε,δ)}

= min{νS ε
(lc)eiηS δ

(lc) : c ∈ S e
(ε,δ)}

= νS ε
(lS e

(ε,δ)) eiηS δ
(lS e

(ε,δ))

Therefore, νS ε
(lS e

(ε,δ))e
iηS δ

(lS e
(ε,δ)) is well defined.

Consider, νS ε
{(lS e

(ε,δ))(mS e
(ε,δ))}e

iηS δ
{(lS e

(ε,δ))(mS e
(ε,δ))}

= νS ε
(lmS e

(ε,δ))e
iηS δ

(lmS e
(ε,δ))

= min{νS ε
(lma)eiηS δ

(lma) : a ∈ S e
(ε,δ)}
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≤ min{max{νS ε
(lb)eiηS (ε,δ)

(lb)
,

νS ε
(mc)eiηS δ

(mc)
} : b, c ∈ S e

ε,δ}

≤ max{min{νS ε
(lb)eiηS δ

(lb)
} : b ∈ S e

ε,δ,

min{νS ε
(mc)eiηS δ

(mc)
} : c ∈ S e

ε,δ }

≤ max{νS ε
(lS e

(ε,δ))e
iηS δ

(lS e
(ε,δ)),

νS ε
(mS e

(ε,δ))e
iηS δ

(mS e
(ε,δ))}.

Also, νS ε
((lS e

(ε,δ))
−1)eiηS δ

((lS e
(ε,δ))

−1) =

νS ε
(l−1S e

ε,δ)e
iηS δ

(l−1S e
ε,δ)

= min{νS ε
(l−1a)eiηS δ

(l−1a) : a ∈ S e
ε,δ}

≤ min{νS ε
(la)eiηS δ

(la) : a ∈ S e
ε,δ}

= νS ε
(lS e

(ε,δ))e
iηS δ

(lS e
(ε,δ)).

This established the proof.

Definition 4.14. Let S (ε,δ) be a (ε, δ)-CAFS G of finite the group G. Then the cardinality of the set
G/S (ε,δ) for (ε, δ)-CAF left cosets of G by S (ε,δ) is known as the index of (ε, δ)-CAFS G and is represent
by [G : l].

Theorem 4.15. (ε, δ)-complex anti fuzzification of Lagrange’s Theorem: Assume that G be finite group
and S (ε,δ) be (ε, δ)-CAFS G of G then G is divisible by the index of (ε, δ)-CAFS G of G.

Proof. By Lemma 4.13, natural homomorphism h introduced from G to G/S (ε,δ) . A subgroup is
introduced by H = {w ∈ G : wS (ε,δ) = eS (ε,δ)}. By attempting to make use of the definition w ∈ H and
g ∈ G, we have wS (ε,δ)(g) = eS (ε,δ)(g). This indicates S (ε,δ)(w−1g) = S (ε,δ)(g). By Theorem 4.11, which
shows that w ∈ S e

(ε,δ). As a result H is contain in S e
(ε,δ). Now, we can take arbitrary element w ∈ S e

(ε,δ)
and applying knowledge S e

(ε,δ) is subgroup of G, we have S (ε,δ)(w−1) = S (ε,δ)(e). From Theorem 4.11 ,
the elements w−1, g ∈ S e

(ε,δ), this mean wS (ε,δ) = eS (ε,δ), implies that w ∈ H. Hence S e
(ε,δ) is contain in

H. We can conclude this the discussion that H = S e
(ε,δ).

Unions of disjoint of right cosets is establish the partition of group G and is defined as
G = z1G∪z2H ∪ · · · ∪ zlH. Where z1H = H. There is a (ε, δ)-CAF cosets ziS (ε,δ) in G/S e

(ε,δ) and also is
a differentiable.
Consider any coset ziS e

(ε,δ). Let w ∈ S e
(ε,δ), then

h(ziw) = ziwS (ε,δ) = ziS (ε,δ)wS (ε,δ)

= ziS (ε,δ)eS (ε,δ)

= ziS (ε,δ).

Hence, h maps every entity of ziS e
(ε,δ) into the (ε, δ)-CAF cosets ziS (ε,δ).

Currently, we can establish a basic association. h among the set {ziS e
(ε,δ) : 1 ≤ i ≤ l } and the set

G/S e
(ε,δ) defined by

h(ziS e
(ε,δ)) = ziS (ε,δ), 1 ≤ i ≤ l.
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The h is injective.
As a result, suppose ziS (ε,δ) = zlS (ε,δ), then z−1

l ziS (ε,δ) = eS (ε,δ). Using (S ), we have z−1
l zi ∈ H, this

means that ziS e
(ε,δ) = ziS e

(ε,δ) and thus h is injective. It is evident from the preceding discussion that
[G : S e

(ε,δ)] and [G : S (ε,δ)] are equal. Since [G : S e
(ε,δ)] divides O(G).

This algebraic concept is shown in example.

Example 4.16. Assume G = {< l,m : l3 = m2 = e, lm = ml2} be a group of order 6 finite permutations.
The (ε, δ)-CAFS G S (ε,δ) of G according to the value ε = 0.2 and δ = π

4 is discuss.

S (ε,δ)(ω) =


0.3e

πi
3 if ω = e,

0.4e
πi
2 , if ω = l, l2,

0.6eπi, otherwise.

The set of all (ε, δ)-CAF left cosets of G by S (ε,δ) is given by:

G/S (ε,δ) = {eS (ε,δ), lS (ε,δ), mS (ε,δ)}.

It represents that [G : S (ε,δ)] = Card(G/S (ε,δ)) = 3.

5. Conclusions

In this article, we defined the concept of (ε, δ)-CAFS as a useful modification of classical CAFS .
We established (ε, δ)-CAFS Gs and presented certain fundamental algebraic characterizations of this
novel framework. In addition, we developed the (ε, δ)-CAF cosets and analyzed some of their algebraic
characteristics. Furthermore, we investigated the (ε, δ)-CAFNS G that generates the (ε, δ)-CAFQG. As
for the future works, we will extend the novel approach to the different algebraic models and then apply
on the extension of group theory, and introduce (ε, δ)-CAF subrings. Furthermore, we will work on
its applications. Moreover, the proposed method can be applied to other areas, such as design concept
evaluation, and the assessment of a method for complex products based on cloud rough numbers [39].
This assessment can be regarded as multi-attribute group decision-making.
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