An $ (\alpha, \beta) $-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced. Using this concept, the $ (\alpha, \beta) $-Pythagorean fuzzy order of elements of groups in $ (\alpha, \beta) $-Pythagorean fuzzy subgroups is defined and examined various algebraic properties of it. A relation between $ (\alpha, \beta) $-Pythagorean fuzzy order of an element of a group in $ (\alpha, \beta) $-Pythagorean fuzzy subgroups and order of the group is established. The extension principle for $ (\alpha, \beta) $-Pythagorean fuzzy sets is introduced. The concept of $ (\alpha, \beta) $-Pythagorean fuzzy normalizer and $ (\alpha, \beta) $-Pythagorean fuzzy centralizer of $ (\alpha, \beta) $-Pythagorean fuzzy subgroups are developed. Further, $ (\alpha, \beta) $-Pythagorean fuzzy quotient group of an $ (\alpha, \beta) $-Pythagorean fuzzy subgroup is defined. Finally, an $ (\alpha, \beta) $-Pythagorean fuzzy version of Lagrange's theorem is proved.
Citation: Supriya Bhunia, Ganesh Ghorai, Qin Xin. On the fuzzification of Lagrange's theorem in $ (\alpha, \beta) $-Pythagorean fuzzy environment[J]. AIMS Mathematics, 2021, 6(9): 9290-9308. doi: 10.3934/math.2021540
An $ (\alpha, \beta) $-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced. Using this concept, the $ (\alpha, \beta) $-Pythagorean fuzzy order of elements of groups in $ (\alpha, \beta) $-Pythagorean fuzzy subgroups is defined and examined various algebraic properties of it. A relation between $ (\alpha, \beta) $-Pythagorean fuzzy order of an element of a group in $ (\alpha, \beta) $-Pythagorean fuzzy subgroups and order of the group is established. The extension principle for $ (\alpha, \beta) $-Pythagorean fuzzy sets is introduced. The concept of $ (\alpha, \beta) $-Pythagorean fuzzy normalizer and $ (\alpha, \beta) $-Pythagorean fuzzy centralizer of $ (\alpha, \beta) $-Pythagorean fuzzy subgroups are developed. Further, $ (\alpha, \beta) $-Pythagorean fuzzy quotient group of an $ (\alpha, \beta) $-Pythagorean fuzzy subgroup is defined. Finally, an $ (\alpha, \beta) $-Pythagorean fuzzy version of Lagrange's theorem is proved.
[1] | M. S. Akash, Applications of Lagrange's theorem in group theory, Int. J. Appl. Math. Comp. Sci., 3 (2015), 1150–1153. |
[2] | R. L. Roth, A history of Lagrange's theorem on groups, Math. Mag., 74 (2001), 99–108. doi: 10.1080/0025570X.2001.11953045 |
[3] | L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X |
[4] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. doi: 10.1016/0022-247X(71)90199-5 |
[5] | J. M. Anthony, H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl., 69 (1979), 124–130. doi: 10.1016/0022-247X(79)90182-3 |
[6] | J. M. Anthony, H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Sets Syst., 7 (1982), 297–305. doi: 10.1016/0165-0114(82)90057-4 |
[7] | P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264–269. doi: 10.1016/0022-247X(81)90164-5 |
[8] | N. Ajmal, A. S. Prajapati, Fuzzy cosets and fuzzy normal subgroups, Inf. Sci., 64 (1992), 17–25. doi: 10.1016/0020-0255(92)90107-J |
[9] | F. P. Choudhury, A. B. Chakraborty, S. S. Khare, A note on fuzzy subgroups and fuzzy homomorphism, J. Math. Anal. Appl., 131 (1988), 537–553. doi: 10.1016/0022-247X(88)90224-7 |
[10] | V. N. Dixit, R. Kumar, N. Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy Sets Syst., 37 (1990), 359–371. doi: 10.1016/0165-0114(90)90032-2 |
[11] | R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy Sets Syst., 35 (1990), 121–124. doi: 10.1016/0165-0114(90)90025-2 |
[12] | A. B. Chakraborty, S. S. Khare, Fuzzy homomorphism and algebraic structures, Fuzzy Sets Syst., 59 (1993), 211–221. doi: 10.1016/0165-0114(93)90201-R |
[13] | N. Ajmal, Homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient groups, Fuzzy Sets Syst., 61 (1994), 329–339. doi: 10.1016/0165-0114(94)90175-9 |
[14] | J. G. Kim, Orders of fuzzy subgroups and fuzzy $p$-subgroups, Fuzzy Sets Syst., 61 (1994), 225–230. doi: 10.1016/0165-0114(94)90237-2 |
[15] | N. P. Mukherjee, P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inf. Sci., 34 (1984), 225–239. doi: 10.1016/0020-0255(84)90050-1 |
[16] | N. P. Mukherjee, P. Bhattacharya, Fuzzy groups: Some group-theoretic analogs, Inf. Sci., 39 (1986), 247–267. doi: 10.1016/0020-0255(86)90039-3 |
[17] | P. Bhattacharya, Fuzzy subgroups: Some characterizations. II, Inf. Sci., 38 (1986), 293–297. doi: 10.1016/0020-0255(86)90028-9 |
[18] | P. Bhattacharya, Fuzzy Groups: Some group theoretic analogs. II, Inf. Sci., 41 (1987), 77–91. doi: 10.1016/0020-0255(87)90006-5 |
[19] | A. K. Ray, On product of fuzzy subgroups, Fuzzy Sets Syst., 105 (1999), 181–183. doi: 10.1016/S0165-0114(98)00411-4 |
[20] | M. Tarnauceanu, Classifying fuzzy normal subgroups of finite groups, Iran. J. Fuzzy Syst., 12 (2015), 107–115. |
[21] | B. O. Onasanya, Review of some anti fuzzy properties of some fuzzy subgroups, Ann. Fuzzy Math. Inform., 11 (2016), 899–904. |
[22] | U. Shuaib, M. Shaheryar, W. Asghar, On some characterizations of o-fuzzy subgroups, IJMCS, 13 (2018), 119–131. |
[23] | U. Shuaib, M. Shaheryar, On some properties of o-anti fuzzy subgroups, IJMCS, 14 (2019), 215–230. |
[24] | G. M. Addis, Fuzzy homomorphism theorems on groups, Korean J. Math., 26 (2018), 373–385. |
[25] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. doi: 10.1016/S0165-0114(86)80034-3 |
[26] | J. Zhan, Z. Tan, Intuitionistic M-fuzzy groups, Soochow J. Math., 30 (2004), 85–90. |
[27] | R. R. Yager, Pythagorean fuzzy subsets, Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013. |
[28] | S. Bhunia, G. Ghorai, Q. Xin, On the characterization of Pythagorean fuzzy subgroups, AIMS Math., 6 (2021), 962–978. doi: 10.3934/math.2021058 |
[29] | V. Chinnadurai, A. Arulselvam, Pythagorean neutrosophic ideals in semigroups, Neutrosophic Sets Syst., 41 (2021), 258–269. |
[30] | X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. doi: 10.1002/int.21738 |
[31] | X. Peng, Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2016), 444–487. doi: 10.1002/int.21790 |
[32] | F. Xiao, W. Ding, Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis, Appl. Soft Comput., 79 (2019), 254–267. doi: 10.1016/j.asoc.2019.03.043 |
[33] | S. Bhunia, G. Ghorai, A new approach to fuzzy group theory using $(\alpha, \beta)$-pythagorean fuzzy sets, Song. J. Sci. Tech., 43 (2021), 295–306. |