In this paper, the authors have established the necessary and sufficient conditions for the submanifolds of Kaehler product manifolds to be biharmonic. Moreover, the magnitude of scalar curvature for the hypersurfaces in a product of two unit spheres has been derived. Also, for the same product, the magnitude of the mean curvature vector for Lagrangian submanifolds has been estimated. Finally, the non-existence condition for totally complex Lagrangian submanifolds in a product of unit sphere and a hyperbolic space has been proved.
Citation: Yanlin Li, Mehraj Ahmad Lone, Umair Ali Wani. Biharmonic submanifolds of Kaehler product manifolds[J]. AIMS Mathematics, 2021, 6(9): 9309-9321. doi: 10.3934/math.2021541
In this paper, the authors have established the necessary and sufficient conditions for the submanifolds of Kaehler product manifolds to be biharmonic. Moreover, the magnitude of scalar curvature for the hypersurfaces in a product of two unit spheres has been derived. Also, for the same product, the magnitude of the mean curvature vector for Lagrangian submanifolds has been estimated. Finally, the non-existence condition for totally complex Lagrangian submanifolds in a product of unit sphere and a hyperbolic space has been proved.
[1] | J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Am. J. Math., 86 (1964), 109–160. doi: 10.2307/2373037 |
[2] | G. Y. Jiang, 2-Harmonic maps and their first and second variational formulas, Chin. Ann. Math. Ser. A, 7 (1986), 389–402. |
[3] | R. I. Caddeo, S. Montaldo, M. P. Piu, On biharmonic maps, Int. Congr. Differ. Geom., Amer. Math. Soc., 288 (2001), 286–290. |
[4] | J. Inoguchi, Submanifolds with harmonic mean curvature vector field in contact 3-manifolds, Colloq. Math., 100 (2004), 163–179. doi: 10.4064/cm100-2-2 |
[5] | S. Maeta, H. Urakawa, Biharmonic Lagrangian submanifolds in Kaehler manifolds, Glasgow Math. J., 55 (2013), 465–480. doi: 10.1017/S0017089512000730 |
[6] | S. Montaldo, C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Union Mat. Argent., 47 (2006), 1–22. |
[7] | Y. L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math., 248 (2010), 217–232. doi: 10.2140/pjm.2010.248.217 |
[8] | H. Urakawa, Sasaki manifolds, Kaehler cone manifolds and biharmonic submanifolds, Illinois J. Math., 58 (2014), 521–535. |
[9] | R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math., 130 (2002), 109–123. doi: 10.1007/BF02764073 |
[10] | D. Fetcu, E. Loubeau, S. Motaldo, C. Oniciuc, Biharmonic submanifolds of $CP^{n}$, Math. Z., 266 (2010), 505–531. doi: 10.1007/s00209-009-0582-z |
[11] | D. Fetcu, C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space forms, Pacific J. Math., 240 (2009), 85–107. doi: 10.2140/pjm.2009.240.85 |
[12] | D. Fetcu, C. Oniciuc, H. Rosenberg, Biharmonic submanifolds with parallel mean curvature in $S^{n}\; \times$ R, J. Geom. Anal., 23 (2013), 2158–2176. doi: 10.1007/s12220-012-9323-3 |
[13] | J. Roth, A note on biharmonic submanifolds of product spaces, J. Geom., 104 (2013), 375–381. doi: 10.1007/s00022-013-0168-0 |
[14] | J. Roth, A. Upadhaya, Biharmonic submanifolds of generalized space forms, Differ. Geom. Appl., 50 (2017), 88–104. doi: 10.1016/j.difgeo.2016.11.003 |
[15] | B. Y. Chen, Chen's biharmonic conjecture and submanifolds with parallel normalized mean curvature vector, Mathematics, 7 (2019), 710. doi: 10.3390/math7080710 |
[16] | Y. Fu, M. Hang, X. Zhan, On Chen's conjecture for hypersurfaces in $R^5$, 2020. arXiv: 2006.07612v3. |
[17] | Y. Li, S. Liu, Z. Wang, Tangent developables and Darboux developables of framed curves, Topol. Appl., (2020), 107526. |
[18] | Y. Li, Z. Wang, Lightlike tangent developables in de Sitter 3-space, J. Geom. Phys., 164 (2021), 1–11. |
[19] | Y. Li, Z. Wang, T. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras., 31 (2021), 1–19. doi: 10.1007/s00006-020-01101-8 |
[20] | Y. Li, Y. Zhu, Q. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods Mod. Phys., 18 (2021), 1–31. |
[21] | K. Yano, M. Kon, Structures on manifolds, World Scientific Publishing Co., Singapore., 1984. |
[22] | A. Balmus, S. Montaldo, C. Oniciuc, Biharmonic PNMC submanifolds in spheres, Ark. Mat., 51 (2013), 197–221. doi: 10.1007/s11512-012-0169-5 |
[23] | B. Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific Publishing Co., Singapore, 1984. |
[24] | R. L. Bishop, S. I. Goldberg, On the topology of positively curved Kaehler manifolds II, Tohoku Math. J., 17 (1962), 310–318. |