Research article Special Issues

Further characterizations of the weak group inverse of matrices and the weak group matrix

  • Received: 09 April 2021 Accepted: 08 June 2021 Published: 22 June 2021
  • MSC : 15A09

  • This paper is devoted to consider some new characteristics and properties of the weak group inverse and the weak group matrix. First, we characterize the weak group inverse of a square matrix based on its range space and null space. Also several different characterizations of the weak group inverse are presented by projection and the Bott-Duffin inverse. Then by using the core-EP decomposition, we investigate the relationships between weak group inverse and other generalized inverses. And some new characterizations of weak group matrix are obtained.

    Citation: Hui Yan, Hongxing Wang, Kezheng Zuo, Yang Chen. Further characterizations of the weak group inverse of matrices and the weak group matrix[J]. AIMS Mathematics, 2021, 6(9): 9322-9341. doi: 10.3934/math.2021542

    Related Papers:

  • This paper is devoted to consider some new characteristics and properties of the weak group inverse and the weak group matrix. First, we characterize the weak group inverse of a square matrix based on its range space and null space. Also several different characterizations of the weak group inverse are presented by projection and the Bott-Duffin inverse. Then by using the core-EP decomposition, we investigate the relationships between weak group inverse and other generalized inverses. And some new characterizations of weak group matrix are obtained.



    加载中


    [1] O. M. Baksalary, G. Trenkler, On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450–457.
    [2] O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010), 681–697. doi: 10.1080/03081080902778222
    [3] J. Benitez, E. Boasso, H. W. Jin, On one-side (B, C)-inverse of arbitrary matrices, Electron. J. Linear Algebra, 32 (2017), 391–422. doi: 10.13001/1081-3810.3487
    [4] A. Ben-Israel, T. N. E. Greville, Generalized inverse: Theory and applications, 2 Eds., Springer Verlag, New-York, 2003.
    [5] R. Bott, R. J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc., 74 (1953), 99–109. doi: 10.1090/S0002-9947-1953-0056573-X
    [6] D. S. Cvetković-Ilić, Y. Wei, Algebraic properties of grneralized inverses, Series: Developments in Mathematics, Springer, 2017.
    [7] C. Y. Deng, H. K. Du, Representation of the Moore-Penrose inverse of $2\times 2$ block operator valued matrices, J. Korean Math. Soc., 46 (2009), 1139–1150. doi: 10.4134/JKMS.2009.46.6.1139
    [8] M. P. Drazin, A class of outer generalized inverse, Linear Algebra Appl., 436 (2012), 1909–1923. doi: 10.1016/j.laa.2011.09.004
    [9] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Mon., 65 (1958), 506–514. doi: 10.1080/00029890.1958.11991949
    [10] D. E. Ferreyra, F. E. Levis, N. Thome, Characterizations of $k$-commutative equalities for some outer generalized inverse, Linear Multiliear Algebra, 68 (2020), 177–192. doi: 10.1080/03081087.2018.1500994
    [11] D. E. Ferreyra, F. E. Levis, N. Thome, Revisiting the core-EP inverse and its extension to rectangular matrices, Quaest. Math., 41 (2018), 265–281. doi: 10.2989/16073606.2017.1377779
    [12] J. Ji, Y. M. Wei, The core-EP, weighted core-EP inverse of matrices and constrained systems of linear equations, Commun. Math. Res., 37 (2021), 86–112. doi: 10.4208/cmr.2020-0028
    [13] W. L. Jiang, K. Z. Zuo, Revisiting of the BT-inverse of matrices, AIMS Math., 6 (2021), 2607–2622. doi: 10.3934/math.2021158
    [14] S. B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226 (2014), 575–580.
    [15] M. Mehdipour, A. Salemi, On a new generalized inverse of matrices, Linear Multilinear Algebra, 66 (2018), 1046–1053. doi: 10.1080/03081087.2017.1336200
    [16] D. Mosić, P. S. Stanimirović, Representations for the weak group inverse, Appl. Math. Comput., 397 (2021), 125957.
    [17] D. Mosić, D. C. Zhang, Weighted weak group inverse for Hilbert space operators, Front. Math. China, 15 (2020), 709–726. doi: 10.1007/s11464-020-0847-8
    [18] R. A. Penrose, A generalized inverse for matrices, Math. Proc. Cambrige Philos. Soc., 51 (1955), 406–413. doi: 10.1017/S0305004100030401
    [19] K. M. Prasad, K. S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62 (2014), 792–802. doi: 10.1080/03081087.2013.791690
    [20] D. S. Rakć, N. C. Din$\acute{c}$i$\acute{c}$, D. S. Djordjevi$\acute{c}$, Core inverse and core partial order of Hilbert space operators, Appl. Math. Comput., 244 (2014), 283–302.
    [21] H. X. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300. doi: 10.1016/j.laa.2016.08.008
    [22] H. X. Wang, J. L. Chen, Weak group inverse, Open Math., 16 (2018), 1218–1232. doi: 10.1515/math-2018-0100
    [23] H. X. Wang, X. J. Liu, The weak group matrix, Aequationes math., 93 (2019), 1261–1273. doi: 10.1007/s00010-019-00639-8
    [24] S. Z. Xu, J. L. Chen, D. Mosic, New characterzations of the CMP inverse of matrices, Linear Multilinear Algebra, 68 (2020), 796–804.
    [25] Y. X. Yuan, K. Z. Zuo, Compute $ \lim\limits_{\lambda\to 0}X(\lambda I_p+YAX)^{-1}Y$ be the product singular value decomposition, Linear Multilinear Algebra, 64 (2016), 269–278. doi: 10.1080/03081087.2015.1034641
    [26] Y. K. Zhou, J. L. Chen, M. M. Zhou, $m$-weak group inverses in a ring with involution, RACSAM, 115 (2021), 1–13. doi: 10.1007/s13398-020-00944-x
    [27] M. M. Zhou, J. L. Chen, Y. K. Zhou, Weak group inverses in proper $*$-rings, J. Algebra Appl., 19 (2021), 2050238.
    [28] M. M. Zhou, J. L. Chen, Y. K. Zhou, N. Thome, Weak group inverses and partial isometris in proper $*$-rings, Linear Multilinear Algebra, (2021), 1884639.
    [29] K. Z. Zuo, O. M. Baksalary, D. S. Cvetkoviić-Ilić, Further characterizations of the co-EP matrices, Linear Algebra Appl., 616 (2021), 66–83. doi: 10.1016/j.laa.2020.12.029
    [30] K. Z. Zuo, Y. J. Cheng, The new revisitation of core-EP inverse of matrices, Filomat, 33 (2019), 3061–3072. doi: 10.2298/FIL1910061Z
    [31] K. Z. Zuo, D. S. Cvetković-Ilić, Y. J. Cheng, Different characterizations of DMP-inverse of matrices, Linear Multilinear Algebra, 2020. DOI: 10.1080/03081087.2020.1729084.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2669) PDF downloads(154) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog