Research article

New characterizations of the generalized Moore-Penrose inverse of matrices

  • Received: 18 October 2021 Revised: 01 December 2021 Accepted: 07 December 2021 Published: 21 December 2021
  • MSC : 15A09

  • Some new characterizations of the generalized Moore-Penrose inverse are proposed using range, null space, several matrix equations and projectors. Several representations of the generalized Moore-Penrose inverse are given. The relationships between the generalized Moore-Penrose inverse and other generalized inverses are discussed using core-EP decomposition. The generalized Moore-Penrose matrices are introduced and characterized. One relation between the generalized Moore-Penrose inverse and corresponding nonsingular border matrix is presented. In addition, applications of the generalized Moore-Penrose inverse in solving restricted matrix equations are studied.

    Citation: Yang Chen, Kezheng Zuo, Zhimei Fu. New characterizations of the generalized Moore-Penrose inverse of matrices[J]. AIMS Mathematics, 2022, 7(3): 4359-4375. doi: 10.3934/math.2022242

    Related Papers:

  • Some new characterizations of the generalized Moore-Penrose inverse are proposed using range, null space, several matrix equations and projectors. Several representations of the generalized Moore-Penrose inverse are given. The relationships between the generalized Moore-Penrose inverse and other generalized inverses are discussed using core-EP decomposition. The generalized Moore-Penrose matrices are introduced and characterized. One relation between the generalized Moore-Penrose inverse and corresponding nonsingular border matrix is presented. In addition, applications of the generalized Moore-Penrose inverse in solving restricted matrix equations are studied.



    加载中


    [1] O. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010), 681–697. http://dx.doi.org/10.1080/03081080902778222
    [2] A. Ben-Israel, T. Greville, Generalized inverses: theory and applications, New-York: Springer-Verlag, 2003. http://dx.doi.org/10.1007/b97366
    [3] D. Cvetković-Ilić, C. Deng, Some results on the Drazin invertibility and idempotents, J. Math. Anal. Appl., 359 (2009), 731–738. http://dx.doi.org/10.1016/j.jmaa.2009.05.062 doi: 10.1016/j.jmaa.2009.05.062
    [4] D. Cvetković-Ilić, Y. Wei, Algebraic properties of generalized inverses, Singapore: Springer Nature, 2017. http://dx.doi.org/10.1007/978-981-10-6349-7
    [5] M. Drazin, Pseudo-inverses in associative rings and semigroups, The American Mathematical Monthly, 65 (1958), 506–514. http://dx.doi.org/10.1080/00029890.1958.11991949 doi: 10.1080/00029890.1958.11991949
    [6] D. Ferreyra, F. Levis, N. Thome, Characterizations of k-commutative equalities for some outer generalized inverses, Linear Multilinear Algebra, 68 (2020), 177–192. http://dx.doi.org/10.1080/03081087.2018.1500994 doi: 10.1080/03081087.2018.1500994
    [7] D. Ferreyra, F. Levis, N. Thome, Revisiting the core-EP inverse and its extension to rectangular matrices, Quaest. Math., 41 (2018), 265–281. http://dx.doi.org/10.2989/16073606.2017.1377779 doi: 10.2989/16073606.2017.1377779
    [8] C. Hung, T. Markham, The Moore-Penrose inverse of a partioned matrix $M = \left[ {\begin{array}{*{20}{c}} A & B \\ C & D\\ \end{array}} \right]$, Linear Algebra Appl., 11 (1975), 73–86. http://dx.doi.org/10.1016/0024-3795(75)90118-4 doi: 10.1016/0024-3795(75)90118-4
    [9] H. Ma, X. Gao, P. Stanimirović, Characterizations, iterative method, sign pattern and perturbation analysis for the DMP inverse with its applications, Appl. Math. Comput., 378 (2020), 125196. http://dx.doi.org/10.1016/j.amc.2020.125196 doi: 10.1016/j.amc.2020.125196
    [10] H. Ma, P. Stanimirović, Characterizations, approximation and pertuibatins of the core-EP inverse, Appl. Math. Comput., 359 (2019), 404–417. http://dx.doi.org/10.1016/j.amc.2019.04.071 doi: 10.1016/j.amc.2019.04.071
    [11] S. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226 (2014), 575–580. http://dx.doi.org/10.1016/j.amc.2013.10.060 doi: 10.1016/j.amc.2013.10.060
    [12] D. Mosić, P. Stanimirović, Representations for the weak group inverse, Appl. Math. Comput., 397 (2021), 125957. http://dx.doi.org/10.1016/j.amc.2021.125957 doi: 10.1016/j.amc.2021.125957
    [13] R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge, 51 (1955), 406–413. http://dx.doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401
    [14] K. Prasad, K. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62 (2014), 792–802. http://dx.doi.org/10.1080/03081087.2013.791690
    [15] K. Stojanović, D. Mosić, Generalization of the Moore-Penrose inverse, RACSAM, 114 (2020), 196. http://dx.doi.org/10.1007/s13398-020-00928-x doi: 10.1007/s13398-020-00928-x
    [16] H. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300. http://dx.doi.org/10.1016/j.laa.2016.08.008 doi: 10.1016/j.laa.2016.08.008
    [17] H. Wang, J. Chen, Weak group inverse, Open Math., 16 (2017), 1218–1232. http://dx.doi.org/10.1515/math-2018-0100
    [18] H. Wang, X. Liu, The weak group matrix, Aequat. Math., 93 (2019), 1261–1273. http://dx.doi.org/10.1007/s00010-019-00639-8
    [19] H. Yan, H. Wang, K. Zuo, Y. Chen, Further characterizations of the weak group inverse of matrices and the weak group matrix, AIMS Mathematics, 6 (2021), 9322–9341. http://dx.doi.org/10.3934/math.2021542 doi: 10.3934/math.2021542
    [20] K. Zuo, O. Baksalary, D. Cvetković-Ilić, Further characterizations of the co-EP matrices, Linear Algebra Appl., 616 (2021), 66–83. http://dx.doi.org/10.1016/j.laa.2020.12.029 doi: 10.1016/j.laa.2020.12.029
    [21] K. Zuo, Y. Cheng, The new revisitation of core-EP inverse of matrices, Filomat, 33 (2019), 3061–3072. http://dx.doi.org/10.2298/FIL1910061Z doi: 10.2298/FIL1910061Z
    [22] K. Zuo, D. Cvetković-Ilić, Y. Cheng, Different characterizations of DMP-inverse of matrices, Linear Multilinear Algebra, (2020), in press. http://dx.doi.org/10.1080/03081087.2020.1729084
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1855) PDF downloads(136) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog