Since the supposed Hermite-Hadamard inequality for a convex function was discussed, its expansions, refinements, and variations, which are called Hermite-Hadamard type inequalities, have been widely explored. The main objective of this article is to acquire new Hermite-Hadamard type inequalities employing the Riemann-Liouville fractional operator for functions whose third derivatives of absolute values are convex and quasi-convex in nature. Some special cases of the newly presented results are discussed as well. As applications, several estimates concerning Bessel functions and special means of real numbers are illustrated.
Citation: Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen. Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications[J]. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
Since the supposed Hermite-Hadamard inequality for a convex function was discussed, its expansions, refinements, and variations, which are called Hermite-Hadamard type inequalities, have been widely explored. The main objective of this article is to acquire new Hermite-Hadamard type inequalities employing the Riemann-Liouville fractional operator for functions whose third derivatives of absolute values are convex and quasi-convex in nature. Some special cases of the newly presented results are discussed as well. As applications, several estimates concerning Bessel functions and special means of real numbers are illustrated.
[1] | Y. Qin, Integral and discrete inequalities and their applications, Birkhäuser, Cham, 2016. doi: 10.1007/978-3-319-33304-5. |
[2] | P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Springer Singapore, 2018. doi: 10.1007/978-981-13-3013-1. |
[3] | T. Du, M. U. Awan, A. Kashuri, S. Zhao, Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$(m, h)$-preinvexity, Appl. Anal., 100 (2021), 642–662. doi: 10.1080/00036811.2019.1616083. doi: 10.1080/00036811.2019.1616083 |
[4] | T. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized $m$-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. doi: 10.1142/S0218348X19501172. doi: 10.1142/S0218348X19501172 |
[5] | S. Qaisar, J. Nasir, S. I. Butt, S. Hussain, On some fractional integral inequalities of Hermite-Hadamard type through convexity, Symmetry, 11 (2019), 137. doi: 10.3390/sym11020137. doi: 10.3390/sym11020137 |
[6] | S. I. Butt, J. Pečarić, A. Vukelić, Generalization of Popoviciu type inequalities via Fink's identity, Mediterr. J. Math., 13 (2016), 1495–1511. doi: 10.1007/s00009-015-0573-8. doi: 10.1007/s00009-015-0573-8 |
[7] | N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen's inequality by Lidstone's polynomial with applications in information theory, J. Math. Inequal., 14 (2019), 249–271. doi: 10.7153/jmi-2020-14-17. doi: 10.7153/jmi-2020-14-17 |
[8] | G. A. Anastassiou, Advanced inequalities, World Scientifc, Singapore, 2010. |
[9] | M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59, (2010), 225–232. doi: 10.1016/j.camwa.2009.08.002. |
[10] | G. Cristescu, L. Lupsa, Non-connected convexities and applications, Boston: Springer, 2002. doi: 10.1007/978-1-4615-0003-2. |
[11] | H. Hudzik, L. Maligranda, Some remarks on $s-$convex functions, Aequationes Math., 48 (1994), 100–111. doi: 10.1007/BF01837981. doi: 10.1007/BF01837981 |
[12] | S. Hussain, S. Qaisar, New integral inequalities of the type of Hermite-Hadamard through quasi convexity, Punjab Univ. J. Math., 45 (2013), 33–38. |
[13] | K. Nikodem, J. L. Sanchez, L. Sanchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aeterna, 4 (2014), 979–987. |
[14] | M. E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard type via $m-$convexity, Appl. Math. Lett., 23 (2010), 1065–1070. doi: 10.1016/j.aml.2010.04.037. doi: 10.1016/j.aml.2010.04.037 |
[15] | M. E. Özdemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via $(\omega, m)-$convexity, Comput. Math. Appl., 61 (2011), 2614–2620. doi: 10.1016/j.camwa.2011.02.053. doi: 10.1016/j.camwa.2011.02.053 |
[16] | D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Ann. Univ. Craiova-Math. Comput. Sci. Ser., 34 (2007), 82–87. |
[17] | M. Alomari, M. Darus, S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Collect, 12 (2009). |
[18] | W. W. Breckner, Stetigkeitsaussagen füreine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978), 13–20. |
[19] | F. X. Chen, S. H. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for $s$–convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705–716. |
[20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[21] | P. O. Mohammed, M. Vivas Cortez, T. Abdeljawad, Y. Rangel-Oliveros, Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications, AIMS Math., 5 (2020), 7316–7331. doi: 10.3934/math.2020468. doi: 10.3934/math.2020468 |
[22] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. doi: 10.3390/sym12040595. doi: 10.3390/sym12040595 |
[23] | O. Omotoyinbo, A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1 (2014), 1–12. |
[24] | I. Podlubni, Fractional differential equations, Elsevier, 1998. |
[25] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048 |
[26] | E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 169 (2017), 1–10. doi: 10.1186/s13660-017-1444-6. doi: 10.1186/s13660-017-1444-6 |
[27] | A. Qayyum, I. Faye, M. Shoaib, On new generalized inequalities via Riemann-Liouville fractional integration, J. Fract. Calc. Appl., 2015. |
[28] | H. Budak, M. Z. Sarikaya, A. Qayyum, New refinements and applications of Ostrowski type inequalities for mappings whose nth derivatives are of bounded variation, TWMS J. Appl. Eng. Math., 11 (2021), 424–435. |
[29] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces, 2012 (2012), 980438. doi: 10.1155/2012/980438. doi: 10.1155/2012/980438 |
[30] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1995. |