It's undeniably true that fractional calculus has been the focus point for numerous researchers in recent couple of years. The writing of the Caputo-Fabrizio fractional operator has been on many demonstrating and real-life issues. The main objective of our article is to improve integral inequalities of Hermite-Hadamard and Pachpatte type incorporating the concept of preinvexity with the Caputo-Fabrizio fractional integral operator. To further enhance the recently presented notion, we establish a new fractional equality for differentiable preinvex functions. Then employing this as an auxiliary result, some refinements of the Hermite-Hadamard type inequality are presented. Also, some applications to special means of our main findings are presented.
Citation: Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia. New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator[J]. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191
It's undeniably true that fractional calculus has been the focus point for numerous researchers in recent couple of years. The writing of the Caputo-Fabrizio fractional operator has been on many demonstrating and real-life issues. The main objective of our article is to improve integral inequalities of Hermite-Hadamard and Pachpatte type incorporating the concept of preinvexity with the Caputo-Fabrizio fractional integral operator. To further enhance the recently presented notion, we establish a new fractional equality for differentiable preinvex functions. Then employing this as an auxiliary result, some refinements of the Hermite-Hadamard type inequality are presented. Also, some applications to special means of our main findings are presented.
[1] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, Springer, New York, 2006. |
[2] | M. Kadakal, H. Kadakal, İ. İşcan, Some new integral inequalities for n-times differentiable s-convex functions in the first sense, Turk. J. Anal. Number Theor., 5 (2017), 63–68. |
[3] | S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, RGMIA Rep. Collect., 3 (2000). |
[4] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2021 (2012), 1–14. doi: 10.1155/2012/980438. doi: 10.1155/2012/980438 |
[5] | İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends Math. Sci., 4 (2016), 140–150. doi: 10.20852/ntmsci.2016318838. doi: 10.20852/ntmsci.2016318838 |
[6] | K. Mehren, P. Agarwal, New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications, J. Comput. Appl. Math., 350 (2019), 274–285. doi: 10.1016/j.cam.2018.10.022. doi: 10.1016/j.cam.2018.10.022 |
[7] | S. Özcan, İ. İşcan, Some new Hermite-Hadamard type integral inequalities for the $s$-convex functions and theirs applications, J. Inequal. Appl., 201 (2019), 1–14. doi: 10.1186/s13660-019-2151-2. doi: 10.1186/s13660-019-2151-2 |
[8] | M. Tariq, New Hermite-Hadamard type inequalities via $p$-harmonic exponential type convexity and applications, Univ. J. Math. Appl., 4 (2021), 59–69. doi: 10.32323/ujma.870050. doi: 10.32323/ujma.870050 |
[9] | M. Tariq, J. Nasir, S. K. Sahoo, A. A. Mallah, A note on some Ostrowski type inequalities via generalized exponentially convex function, J. Math. Anal. Model., 2 (2021), 1–15. |
[10] | S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via $n$-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 508 (2020). doi: 10.1186/s13662-020-02967-5. |
[11] | S. I. Butt, S. Rashid, M. Tariq, X. H. Wang, Novel refinements via $n$-polynomial harmonically $s$-type convex functions and applications in special functions, J. Funct. Space., 2021 (2021), 1–17. doi: 10.1155/2021/6615948. doi: 10.1155/2021/6615948 |
[12] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernal, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[13] | M. ur Rahman, S. Ahmad, R. T. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. doi: 10.1016/j.chaos.2021.111121. doi: 10.1016/j.chaos.2021.111121 |
[14] | S. Ahmad, M. ur Rahman, M. Arfan, On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator, Chaos Soliton. Fract., 146 (2021), 110892. doi: 10.1016/j.chaos.2021.110892. doi: 10.1016/j.chaos.2021.110892 |
[15] | A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017). doi: 10.1061/(ASCE)EM.1943-7889.0001091. |
[16] | N. Sene, Stability analysis of the fractional differential equations with the Caputo-Fabrizio fractional derivative, J. Fract. Calculus Appl., 11 (2020), 160–72. |
[17] | S. Momani, N. Djeddi, M. Al-Smadi, S. Al-Omari, Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method, Appl. Numl. Math., 170 (2021), 418–434. doi: 10.1016/j.apnum.2021.08.005. doi: 10.1016/j.apnum.2021.08.005 |
[18] | M. Al-Smadi, N. Djeddi, S. Momani, S. Al-Omari, S. Araci, An attractive numerical algorithm for solving nonlinear Caputo-Fabrizio fractional Abel differential equation in a Hilbert space, Adv. Differ. Equ., 1 (2021), 1–18. doi: 10.1186/s13662-021-03428-3. doi: 10.1186/s13662-021-03428-3 |
[19] | M. Al-Smadi, H. Dutta, S. Hasan, S. Momani, On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert space, Math. Model. Nat. Phenom., 16 (2021), 41. doi: 10.1051/mmnp/2021030. doi: 10.1051/mmnp/2021030 |
[20] | S. Hasan, M. Al-Smadi, A. El-Ajou, S. Momani, S. Hadid, Z. Al-Zhour, Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system, Chaos Soliton. Fract., 143 (2021), 110506. doi: 10.1016/j.chaos.2020.110506. doi: 10.1016/j.chaos.2020.110506 |
[21] | M. Al-Smadi, O. A. Arqub, D. Zeidan, Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications, Chaos Soliton. Fract., 146 (2021), 110891. doi: 10.1016/j.chaos.2021.110891. doi: 10.1016/j.chaos.2021.110891 |
[22] | S. Mititelu, Invex sets, Math. Rep., 46 (1994), 529–532. |
[23] | T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60 (2005), 1473–1484. doi: 10.1016/j.na.2004.11.005. doi: 10.1016/j.na.2004.11.005 |
[24] | T. Weir, B. Mond, Pre-inven functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8. doi: 10.1016/0022-247X(88)90113-8 |
[25] | M. A. Noor, K. I. Noor, M. U. Awan, J. Y. Li, On Hermite-Hadamard inequalities for $h$-preinvex functions, Filomat, 28 (2014), 1463–1474. doi: 10.2298/FIL1407463N. doi: 10.2298/FIL1407463N |
[26] | M. A. Noor, Hermite-Hadamard integral inequalities for $\log$-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131. |
[27] | Barani, G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 247 (2012). doi: 10.1186/1029-242X-2012-247. |
[28] | M. A. Noor, Hadamard integral inequalities for product of two preinvex function, Nonlinear Anal. Forum., 14 (2009), 167–173. |
[29] | M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl., 11 (2006), 165–171. |
[30] | M. A. Noor, On Hadamard integral inequalities invoving two log-preinvex functions, J. Inequal. Pure Appl. Math., 3 (2007), 1–6. doi: 10.1007/s10699-008-9143-x. doi: 10.1007/s10699-008-9143-x |
[31] | M. U. Awan, S. Talib, M. A. Noor, Y. M. Chu, K. I. Noor, Some trapezium-like inequalities involving functions having strongly $n$-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1–9. doi: 10.1155/2020/9154139. doi: 10.1155/2020/9154139 |
[32] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9. doi: 10.1016/S0034-4877(17)30059-9 |
[33] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 313 (2017). doi: 10.1186/s13662-017-1285-0. |
[34] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[35] | İ. İşcan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 304 (2019). doi: 10.1186/s13660-019-2258-5. |
[36] | M. Kadakal, İ. İscan, H. Kadakal, On improvements of some integral inequalities, Honam Math. J., 43 (2021), 441–452. doi: 10.5831/HMJ.2021.43.3.441. doi: 10.5831/HMJ.2021.43.3.441 |
[37] | M. Gurbuz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 172 (2020). doi: 10.1186/s13660-020-02438-1. |