Research article Special Issues

Integral inequalities for hyperbolic type preinvex functions

  • Received: 08 June 2021 Accepted: 06 July 2021 Published: 14 July 2021
  • MSC : : 30C45, 30C50, 49J40, 90C33

  • In this work, we establish the concept of a new class of non-convex functions, namely hyperbolic type preinvex functions. Secondly few algebraic properties of this class are obtained. Further Hermite-Hadamard type integral inequalities are established for this class. We also derive several new inequalities for the functions for which absolute value of first derivative, with exponent greater or equal to one is hyperbolic type preinvexity. The results are obtained by using both the Hölder's inequality and Hölder-Iscan inequality and compared at the end. Several special cases are discussed as applications of the results.

    Citation: Sarah Elahi, Muhammad Aslam Noor. Integral inequalities for hyperbolic type preinvex functions[J]. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597

    Related Papers:

  • In this work, we establish the concept of a new class of non-convex functions, namely hyperbolic type preinvex functions. Secondly few algebraic properties of this class are obtained. Further Hermite-Hadamard type integral inequalities are established for this class. We also derive several new inequalities for the functions for which absolute value of first derivative, with exponent greater or equal to one is hyperbolic type preinvexity. The results are obtained by using both the Hölder's inequality and Hölder-Iscan inequality and compared at the end. Several special cases are discussed as applications of the results.



    加载中


    [1] M. A. Hanson, On Sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi: 10.1016/0022-247X(81)90123-2
    [2] T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
    [3] M. A. Noor, Hermite Hadramrd Integral Inequalities for Log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131.
    [4] T. Antczak, Mean value in invexity analysis, Nonl. Anal., 60 (2005), 1473–1484. doi: 10.1016/j.na.2004.11.005
    [5] A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 247 (2012), 2012.
    [6] J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction considereepar Riemann, J. Math. Pures Appl., 58 (1983), 171–215.
    [7] S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057
    [8] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, App. Math. Lett., 11 (1998), 91–95.
    [9] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, 2000.
    [10] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
    [11] S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., 32 (1999), 687–696.
    [12] A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite–Hadamard type, J. Approx. Th., 115 (2002), 260–288. doi: 10.1006/jath.2001.3658
    [13] U. S. Kirmaci, M. K. Bakula, M. E. Ozdemir, J. Pecaric, Hadamard-type inequalities fors-convex functions, Appl. Math. Comput., 193 (2007), 26–35.
    [14] M. Matloka, On some Hadamard-type inequalities for $(h_{1}, h_{2})$-preinvex functions on the co-ordinates, J. Inequal. Appl., 2013 (2013), 227. doi: 10.1186/1029-242X-2013-227
    [15] A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comp., 73 (2004), 1365–1384.
    [16] A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal., 43 (2005), 909–923. doi: 10.1137/S0036142903435958
    [17] S. Varosanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303–311.
    [18] T. Toplu, I. Iscan, M. Kadakal, Hyperbolic type convexity and some new inequalities, Honam Math. J., 42 (2020), 301–318.
    [19] A. Ben-Israel, B. Mond, What is invexity$?$ J. Aust. Math. Soc. Ser. B, 28 (1986), 1–9.
    [20] R. T. Rockafellar, Convex Analysis, Princeton Uni. Press. Princeton, NJ, 1970.
    [21] M. A. Noor, K. I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math., 4 (2019), 1554–1568. doi: 10.3934/math.2019.6.1554
    [22] M. A. Noor, K. I. Noor, Higher order strongly general convex functions and variational inequalities, AIMS Math., 5 (2020), 3646–3663. doi: 10.3934/math.2020236
    [23] M. A. Noor, K. I. Noor, M. T. Rassias, New trends in general variational inequalities, Acta Applicand. Math., 170 (2020), 981–1046. doi: 10.1007/s10440-020-00366-2
    [24] M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for $h-$convex functons, J. Math. Inequal., 2 (2008), 335–341.
    [25] A. A. Shaikh, A. Iqbal, C. K. Mondal, Some results on $\varphi $–convex functions and geodesic $\varphi $-convex functions, Differ. Geom. Dyn. Syst., 20 (2018), 159–170.
    [26] I. Iscan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 304 (2019), 1–11.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2173) PDF downloads(102) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog