In this paper, a new total generalized variational (TGV) model for restoring images with Cauchy noise is proposed, which contains a non-convex fidelity term and a TGV regularization term. In order to obtain a strictly convex model, we add an appropriate proximal term to the non-convex fidelity term. We prove that the solution of the proposed model exists and is unique. Due to the convexity of the proposed model and in order to get a convergent algorithm, we employ an alternating minimization algorithm to solve the proposed model. Finally, we demonstrate the performance of our scheme by numerical examples. Numerical results demonstrate that the proposed algorithm significantly outperforms some previous methods for Cauchy noise removal.
Citation: Lufeng Bai. A new approach for Cauchy noise removal[J]. AIMS Mathematics, 2021, 6(9): 10296-10312. doi: 10.3934/math.2021596
In this paper, a new total generalized variational (TGV) model for restoring images with Cauchy noise is proposed, which contains a non-convex fidelity term and a TGV regularization term. In order to obtain a strictly convex model, we add an appropriate proximal term to the non-convex fidelity term. We prove that the solution of the proposed model exists and is unique. Due to the convexity of the proposed model and in order to get a convergent algorithm, we employ an alternating minimization algorithm to solve the proposed model. Finally, we demonstrate the performance of our scheme by numerical examples. Numerical results demonstrate that the proposed algorithm significantly outperforms some previous methods for Cauchy noise removal.
[1] | L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259–268. doi: 10.1016/0167-2789(92)90242-F |
[2] | K. Bredies, H. P. Sun, Preconditioned Douglas-Rachford algorithms for TV and TGV-regularized variational imaging problems, J. Math. Imaging Vis., 53 (2015), 317–344. |
[3] | S. Wang, T. Z. Huang, J. Liu, X. G. Lv, An alternating iterative algorithm for image deblurring and denoising problems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 617–626. doi: 10.1016/j.cnsns.2013.07.004 |
[4] | Y. L. Wang, J. F. Yang, W. Yin, Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248–272. doi: 10.1137/080724265 |
[5] | A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89–97. doi: 10.1023/B:JMIV.0000011321.19549.88 |
[6] | A. Beck, M. Teboulle, Fast gradient-based algorithm for constrained total variation denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), 2419–2434. doi: 10.1109/TIP.2009.2028250 |
[7] | G. A. Tsihrintzis, Statistical modeling and receiver design for multi-user communication networks, In: R. J. Adler, R. E. Feldman, M. S. Taqqu, A practical guide to heavy tails: Statistical techniques and applications, Birkhäuser, 1998. |
[8] | B. Kosko, Noise, New York: Viking Press, 2006. |
[9] | T. Pander, New polynomial approach to myriad filter computation, Signal Process., 90 (2010), 1991–2001. doi: 10.1016/j.sigpro.2010.01.001 |
[10] | Y. C. Chang, S. R. Kadaba, P. C. Doerschuk, S. B. Gelfand, Image restoration using recursive Markov random field models driven by Cauchy distributed noise, IEEE Signal Process. Lett., 8 (2001), 65–66. doi: 10.1109/97.905941 |
[11] | A. Loza, D. Bull, N. Canagarajah, A. Achim, Non-Gaussian model-based fusion of noisy images in the wavelet domain, Comput. Vis. Image Und., 114 (2010), 54–65. doi: 10.1016/j.cviu.2009.09.002 |
[12] | T. Wan, N. Canagarajah, A. Achim, Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain, IET Image Process., 5 (2011), 159–170. doi: 10.1049/iet-ipr.2009.0300 |
[13] | F. Sciacchitano, Y. Q. Dong, T. Y. Zeng, Variational approach for restoring blurred images with Cauchy noise, SIAM J. Imaging Sci., 8 (2015), 1894–1922. doi: 10.1137/140997816 |
[14] | A. C. Bovik, Handbook of image and video processing, New York: Academic Press, 2000. |
[15] | J. J. Mei, Y. Dong, T. Z. Huang, W. Yin, Cauchy noise removal by non-convex ADMM with convergence guarantees, J. Sci. Comput., 74 (2018), 743–766. doi: 10.1007/s10915-017-0460-5 |
[16] | K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. |
[17] | F. Knoll, K. Bredies, T. Pock, R. Stollberger, Second order total generalized variation (TGV) for MRI, Magn. Reson. Med., 65 (2011), 480–491. doi: 10.1002/mrm.22595 |
[18] | K. Bredies, K. Kunisch, T. Valkonen, Properties of L1-TGV2: The one-dimensional case, J. Math. Anal. Appl., 398 (2013), 438–454. doi: 10.1016/j.jmaa.2012.08.053 |
[19] | Q. X. Zhong, C. S. Wu, Q. L. Shu, R. W. Liu, Spatially adaptive total generalized variation-regularized image deblurring with impulse noise, J. Electron. Imaging, 27 (2018), 053006. |
[20] | W. Q. Lu, J. M. Duan, Z. W. Qiu, Z. K. Pan, R. W. Liu, L. Bai, Implementation of high-order variational models made easy for image processing, Math. Methods Appl. Sci., 39 (2016), 4208–4233. doi: 10.1002/mma.3858 |
[21] | R. W. Liu, L. Shi, W. H. Huang, J. Xu, S. C. H. Yu, D. F. Wang, Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters, Mag. Reson. Imaging, 32 (2014), 702–720. doi: 10.1016/j.mri.2014.03.004 |
[22] | R. W. Liu, L. Shi, S. C. H. Yu, D. F. Wang, Box-constrained second-order total generalized variation minimization with a combined L1, 2 data-fidelity term for image reconstruction, J. Electron. Imaging, 24 (2015), 033026. doi: 10.1117/1.JEI.24.3.033026 |
[23] | Y. Dong, T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598–1625. doi: 10.1137/120870621 |
[24] | G. Aubert, J. F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925–946. doi: 10.1137/060671814 |
[25] | K. Bredies, Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty, In: A. Bruhn, T. Pock, X. C. Tai, Efficient algorithms for global optimization methods in computer vision, Lecture Notes in Computer Science, Berlin: Springer, 8293 (2014), 44–77. |
[26] | L. F. Bai, A new non-convex approach for image restoration with Gamma noise, Comput. Math. Appl., 77 (2019), 2627–2639. doi: 10.1016/j.camwa.2018.12.045 |
[27] | W. Feller, An introduction to probability theory and its applications, John Wiley & Sons, 2008. |
[28] | D. P. Bertsekas, A. Nedić, A. E. Ozdaglar, Convex analysis and optimization, Athena Scientific, 2003. |
[29] | R. Bergmann, A. Weinmann, A second-order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data, J. Math. Imaging Vis., 55 (2016), 401–427. doi: 10.1007/s10851-015-0627-3 |
[30] | N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), 127–239. |
[31] | A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120–145. doi: 10.1007/s10851-010-0251-1 |
[32] | W. H. Guo, J. Qin, W. T. Yin, A new detail-preserving regularity scheme, SIAM J. Imaging Sci., 7 (2014), 1309–1334. doi: 10.1137/120904263 |
[33] | N. Jacobson, Basic algebra II, San Francisco: Freeman Company, 1980. |
[34] | C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Prob., 20 (2004), 103–120. doi: 10.1088/0266-5611/20/1/006 |
[35] | P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168–1200. doi: 10.1137/050626090 |
[36] | Y. W. Wen, M. K. Ng, W. K. Ching, Iterative algorithms based on decoupling of deblurring and denoising for image restoration, SIAM J. Sci. Comput., 30 (2007), 2655–2674. |
[37] | Y. M. Huang, M. K. Ng, Y. W. Wen, A fast total variation minimization method for image restoration, Multiscale Model. Simul., 7 (2008), 774–795. doi: 10.1137/070703533 |
[38] | C. L. Byrne, Applied iterative methods, New York: AK Peters/CRC Press, 2007. |
[39] | B. R. Frieden, A new restoring algorithm for the preferential enhancement of edge gradients, J. Opt. Soc. Am., 66 (1976), 116–123. |