Research article Special Issues

A new approach for Cauchy noise removal

  • Received: 13 April 2021 Accepted: 25 June 2021 Published: 13 July 2021
  • MSC : 49M20, 49N45, 65K10, 90C90

  • In this paper, a new total generalized variational (TGV) model for restoring images with Cauchy noise is proposed, which contains a non-convex fidelity term and a TGV regularization term. In order to obtain a strictly convex model, we add an appropriate proximal term to the non-convex fidelity term. We prove that the solution of the proposed model exists and is unique. Due to the convexity of the proposed model and in order to get a convergent algorithm, we employ an alternating minimization algorithm to solve the proposed model. Finally, we demonstrate the performance of our scheme by numerical examples. Numerical results demonstrate that the proposed algorithm significantly outperforms some previous methods for Cauchy noise removal.

    Citation: Lufeng Bai. A new approach for Cauchy noise removal[J]. AIMS Mathematics, 2021, 6(9): 10296-10312. doi: 10.3934/math.2021596

    Related Papers:

  • In this paper, a new total generalized variational (TGV) model for restoring images with Cauchy noise is proposed, which contains a non-convex fidelity term and a TGV regularization term. In order to obtain a strictly convex model, we add an appropriate proximal term to the non-convex fidelity term. We prove that the solution of the proposed model exists and is unique. Due to the convexity of the proposed model and in order to get a convergent algorithm, we employ an alternating minimization algorithm to solve the proposed model. Finally, we demonstrate the performance of our scheme by numerical examples. Numerical results demonstrate that the proposed algorithm significantly outperforms some previous methods for Cauchy noise removal.



    加载中


    [1] L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259–268. doi: 10.1016/0167-2789(92)90242-F
    [2] K. Bredies, H. P. Sun, Preconditioned Douglas-Rachford algorithms for TV and TGV-regularized variational imaging problems, J. Math. Imaging Vis., 53 (2015), 317–344.
    [3] S. Wang, T. Z. Huang, J. Liu, X. G. Lv, An alternating iterative algorithm for image deblurring and denoising problems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 617–626. doi: 10.1016/j.cnsns.2013.07.004
    [4] Y. L. Wang, J. F. Yang, W. Yin, Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248–272. doi: 10.1137/080724265
    [5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89–97. doi: 10.1023/B:JMIV.0000011321.19549.88
    [6] A. Beck, M. Teboulle, Fast gradient-based algorithm for constrained total variation denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), 2419–2434. doi: 10.1109/TIP.2009.2028250
    [7] G. A. Tsihrintzis, Statistical modeling and receiver design for multi-user communication networks, In: R. J. Adler, R. E. Feldman, M. S. Taqqu, A practical guide to heavy tails: Statistical techniques and applications, Birkhäuser, 1998.
    [8] B. Kosko, Noise, New York: Viking Press, 2006.
    [9] T. Pander, New polynomial approach to myriad filter computation, Signal Process., 90 (2010), 1991–2001. doi: 10.1016/j.sigpro.2010.01.001
    [10] Y. C. Chang, S. R. Kadaba, P. C. Doerschuk, S. B. Gelfand, Image restoration using recursive Markov random field models driven by Cauchy distributed noise, IEEE Signal Process. Lett., 8 (2001), 65–66. doi: 10.1109/97.905941
    [11] A. Loza, D. Bull, N. Canagarajah, A. Achim, Non-Gaussian model-based fusion of noisy images in the wavelet domain, Comput. Vis. Image Und., 114 (2010), 54–65. doi: 10.1016/j.cviu.2009.09.002
    [12] T. Wan, N. Canagarajah, A. Achim, Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain, IET Image Process., 5 (2011), 159–170. doi: 10.1049/iet-ipr.2009.0300
    [13] F. Sciacchitano, Y. Q. Dong, T. Y. Zeng, Variational approach for restoring blurred images with Cauchy noise, SIAM J. Imaging Sci., 8 (2015), 1894–1922. doi: 10.1137/140997816
    [14] A. C. Bovik, Handbook of image and video processing, New York: Academic Press, 2000.
    [15] J. J. Mei, Y. Dong, T. Z. Huang, W. Yin, Cauchy noise removal by non-convex ADMM with convergence guarantees, J. Sci. Comput., 74 (2018), 743–766. doi: 10.1007/s10915-017-0460-5
    [16] K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526.
    [17] F. Knoll, K. Bredies, T. Pock, R. Stollberger, Second order total generalized variation (TGV) for MRI, Magn. Reson. Med., 65 (2011), 480–491. doi: 10.1002/mrm.22595
    [18] K. Bredies, K. Kunisch, T. Valkonen, Properties of L1-TGV2: The one-dimensional case, J. Math. Anal. Appl., 398 (2013), 438–454. doi: 10.1016/j.jmaa.2012.08.053
    [19] Q. X. Zhong, C. S. Wu, Q. L. Shu, R. W. Liu, Spatially adaptive total generalized variation-regularized image deblurring with impulse noise, J. Electron. Imaging, 27 (2018), 053006.
    [20] W. Q. Lu, J. M. Duan, Z. W. Qiu, Z. K. Pan, R. W. Liu, L. Bai, Implementation of high-order variational models made easy for image processing, Math. Methods Appl. Sci., 39 (2016), 4208–4233. doi: 10.1002/mma.3858
    [21] R. W. Liu, L. Shi, W. H. Huang, J. Xu, S. C. H. Yu, D. F. Wang, Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters, Mag. Reson. Imaging, 32 (2014), 702–720. doi: 10.1016/j.mri.2014.03.004
    [22] R. W. Liu, L. Shi, S. C. H. Yu, D. F. Wang, Box-constrained second-order total generalized variation minimization with a combined L1, 2 data-fidelity term for image reconstruction, J. Electron. Imaging, 24 (2015), 033026. doi: 10.1117/1.JEI.24.3.033026
    [23] Y. Dong, T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598–1625. doi: 10.1137/120870621
    [24] G. Aubert, J. F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925–946. doi: 10.1137/060671814
    [25] K. Bredies, Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty, In: A. Bruhn, T. Pock, X. C. Tai, Efficient algorithms for global optimization methods in computer vision, Lecture Notes in Computer Science, Berlin: Springer, 8293 (2014), 44–77.
    [26] L. F. Bai, A new non-convex approach for image restoration with Gamma noise, Comput. Math. Appl., 77 (2019), 2627–2639. doi: 10.1016/j.camwa.2018.12.045
    [27] W. Feller, An introduction to probability theory and its applications, John Wiley & Sons, 2008.
    [28] D. P. Bertsekas, A. Nedić, A. E. Ozdaglar, Convex analysis and optimization, Athena Scientific, 2003.
    [29] R. Bergmann, A. Weinmann, A second-order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data, J. Math. Imaging Vis., 55 (2016), 401–427. doi: 10.1007/s10851-015-0627-3
    [30] N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), 127–239.
    [31] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120–145. doi: 10.1007/s10851-010-0251-1
    [32] W. H. Guo, J. Qin, W. T. Yin, A new detail-preserving regularity scheme, SIAM J. Imaging Sci., 7 (2014), 1309–1334. doi: 10.1137/120904263
    [33] N. Jacobson, Basic algebra II, San Francisco: Freeman Company, 1980.
    [34] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Prob., 20 (2004), 103–120. doi: 10.1088/0266-5611/20/1/006
    [35] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168–1200. doi: 10.1137/050626090
    [36] Y. W. Wen, M. K. Ng, W. K. Ching, Iterative algorithms based on decoupling of deblurring and denoising for image restoration, SIAM J. Sci. Comput., 30 (2007), 2655–2674.
    [37] Y. M. Huang, M. K. Ng, Y. W. Wen, A fast total variation minimization method for image restoration, Multiscale Model. Simul., 7 (2008), 774–795. doi: 10.1137/070703533
    [38] C. L. Byrne, Applied iterative methods, New York: AK Peters/CRC Press, 2007.
    [39] B. R. Frieden, A new restoring algorithm for the preferential enhancement of edge gradients, J. Opt. Soc. Am., 66 (1976), 116–123.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2804) PDF downloads(98) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog