Research article

Application of Fisher information to CMOS noise estimation

  • Received: 19 January 2023 Revised: 26 March 2023 Accepted: 11 April 2023 Published: 19 April 2023
  • MSC : 62F12, 65Y04, 68U10, 94A08

  • Analysis of the accuracy of estimated parameters is an important research direction. In the article, the maximum likelihood estimation is used to estimate CMOS image noise parameters and Fisher information is used to analyse their accuracy. The accuracies of the two parameters are different in different situations. Two applications of it are proposed in this paper. The first one is a guide to image representation. The standard pixel image has higher accuracy for signal-dependent noise and higher error for additive noise, in contrast to the normalised pixel image. Therefore, the corresponding image representation is chosen to estimate the noise parameters according to the dominant noise. The second application of the conclusions is a guide to algorithm design. For standard pixel images, the error of additive noise estimation will largely affect the final denoising result if two kinds of noise are removed simultaneously. Therefore, a divide-and-conquer hybrid total least squares algorithm is proposed for CMOS image restoration. After estimating the parameters, the total least square algorithm is first used to remove the signal-dependent noise of the image. Then, the additive noise parameters of the processed image are updated by using the principal component analysis algorithm, and the additive noise in the image is removed by BM3D. Experiments show that this hybrid method can effectively avoid the problems caused by the inconsistent precision of the two kinds of noise parameters. Compared with the state-of-art methods, the new method shows certain advantages in subjective visual quality and objective image restoration indicators.

    Citation: Mingying Pan, Xiangchu Feng. Application of Fisher information to CMOS noise estimation[J]. AIMS Mathematics, 2023, 8(6): 14522-14540. doi: 10.3934/math.2023742

    Related Papers:

  • Analysis of the accuracy of estimated parameters is an important research direction. In the article, the maximum likelihood estimation is used to estimate CMOS image noise parameters and Fisher information is used to analyse their accuracy. The accuracies of the two parameters are different in different situations. Two applications of it are proposed in this paper. The first one is a guide to image representation. The standard pixel image has higher accuracy for signal-dependent noise and higher error for additive noise, in contrast to the normalised pixel image. Therefore, the corresponding image representation is chosen to estimate the noise parameters according to the dominant noise. The second application of the conclusions is a guide to algorithm design. For standard pixel images, the error of additive noise estimation will largely affect the final denoising result if two kinds of noise are removed simultaneously. Therefore, a divide-and-conquer hybrid total least squares algorithm is proposed for CMOS image restoration. After estimating the parameters, the total least square algorithm is first used to remove the signal-dependent noise of the image. Then, the additive noise parameters of the processed image are updated by using the principal component analysis algorithm, and the additive noise in the image is removed by BM3D. Experiments show that this hybrid method can effectively avoid the problems caused by the inconsistent precision of the two kinds of noise parameters. Compared with the state-of-art methods, the new method shows certain advantages in subjective visual quality and objective image restoration indicators.



    加载中


    [1] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, Sixth international conference on computer vision (IEEE Cat. No. 98CH36271), (1998), 839–846. http://dx.doi.org/10.1109/ICCV.1998.710815 doi: 10.1109/ICCV.1998.710815
    [2] S. Osher, M. Burger, D. Goldfarb, J. Xu, E. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Sim., 4 (2005), 460–489. http://dx.doi.org/10.1137/040605412 doi: 10.1137/040605412
    [3] Y. zhang, S. Li, B. Wu, S. Du, Image multiplicative denoising using adaptive Euler's elastica as the regularization, J. Sci. Comput., 90 (2022), 69. http://dx.doi.org/10.1007/s10915-021-01721-7 doi: 10.1007/s10915-021-01721-7
    [4] L. Rudin, P. L. Lions, S. Osher, Geometric level set methods in imaging, vision, and graphics, New York, USA: Springer, 2003. http://dx.doi.org/10.1007/0-387-21810-6_6
    [5] J. Shi, S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294–321. http://dx.doi.org/10.1137/070689954 doi: 10.1137/070689954
    [6] K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. http://dx.doi.org/10.1137/090769521 doi: 10.1137/090769521
    [7] Y. Lv, Total generalized variation denoising of speckled images using a primal-dual algorithm, J. Appl. Math. Comput., 62 (2020), 489–509. http://dx.doi.org/10.1007/s12190-019-01293-8 doi: 10.1007/s12190-019-01293-8
    [8] A. Ben-Loghfyry, A. Hakim, A. Laghrib, A denoising model based on the fractional Beltrami regularization and its numerical solution, J. Appl. Math. Comput., 69 (2023), 1431–1463. http://dx.doi.org/10.1007/s12190-022-01798-9 doi: 10.1007/s12190-022-01798-9
    [9] T. H. Ma, T. Z. Huang, X. L. Zhao, Spatially dependent regularization parameter selection for total generalized variation-based image denoising, Comput. Appl. Math., 37 (2018), 277–296. http://dx.doi.org/10.1007/s40314-016-0342-8 doi: 10.1007/s40314-016-0342-8
    [10] H. Houichet, A. Theljani, M. Moakher, A nonlinear fourth-order PDE for image denoising in Sobolev spaces with variable exponents and its numerical algorithm, Comput. Appl. Math., 40 (2021), 1–29. http://dx.doi.org/10.1007/s40314-021-01462-1 doi: 10.1007/s40314-021-01462-1
    [11] A. Hakim, A. Ben-Loghfyry, A total variable-order variation model for image denoising, AIMS Math., 4 (2019), 1320–1335. http://dx.doi.org/10.3934/math.2019.5.1320 doi: 10.3934/math.2019.5.1320
    [12] J. L. Starck, E. J. Candès, D. L. Donoho, The curvelet transform for image denoising, IEEE T. Image Process., 11 (2002), 670–684. http://dx.doi.org/10.1109/TIP.2002.1014998 doi: 10.1109/TIP.2002.1014998
    [13] J. Yang, Y. Wang, W. Xu, Q. Dai, Image and video denoising using adaptive dual-tree discrete wavelet packets, IEEE T. Circ. Syst. Vid., 19 (2009), 642–655. http://dx.doi.org/10.1109/TCSVT.2009.2017402 doi: 10.1109/TCSVT.2009.2017402
    [14] L. Fan, X. Li, H. Fan, Y. Feng, C. Zhang, Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors, IEEE T. Circ. Syst. Vid., 29 (2019), 3222–3235. http://dx.doi.org/10.1109/TCSVT.2018.2878794 doi: 10.1109/TCSVT.2018.2878794
    [15] Z. Long, N. H. Younan, Denoising of images with multiplicative noise corruption, 2005 13th European Signal Processing Conference, (2005), 1–4.
    [16] W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally centralized sparse representation for image restoration, IEEE T. Image Process., 22 (2012), 1620–1630. http://dx.doi.org/10.1109/TIP.2012.2235847 doi: 10.1109/TIP.2012.2235847
    [17] A. Buades, B. Coll, J. M. Morel, A non-local algorithm for image denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), (2005), 60–65. http://dx.doi.org/10.1109/CVPR.2005.38 doi: 10.1109/CVPR.2005.38
    [18] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE T. Image Process., 16 (2007), 2080–2095. http://dx.doi.org/10.1109/TIP.2007.901238 doi: 10.1109/TIP.2007.901238
    [19] S. Gu, L. Zhang, W. Zuo, X. Feng, Weighted nuclear norm minimization with application to image denoising, 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014), 2862–2869. http://dx.doi.org/10.1109/CVPR.2014.366 doi: 10.1109/CVPR.2014.366
    [20] J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image restoration, 2009 IEEE 12th International Conference on Computer Vision, (2009), 2272–2279. http://dx.doi.org/10.1109/ICCV.2009.5459452 doi: 10.1109/ICCV.2009.5459452
    [21] W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally centralized sparse representation for image restoration, IEEE T. Image Process., 22 (2013), 1620–1630. http://dx.doi.org/10.1109/TIP.2012.2235847 doi: 10.1109/TIP.2012.2235847
    [22] Q. Guo, C. Zhang, Y. Zhang, H. Liu, An efficient SVD-based method for image denoising, IEEE T. Circ. Syst. Vid., 26 (2016), 868–880. http://dx.doi.org/10.1109/TCSVT.2015.2416631 doi: 10.1109/TCSVT.2015.2416631
    [23] M. Yahia, T. Ali, M. M. Mortula, R. Abdelfattah, S. E. Mahdy, N. S. Arampola, Enhancement of SAR speckle denoising using the improved iterative filter, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13 (2020), 859–871. http://dx.doi.org/10.1109/JSTARS.2020.2973920 doi: 10.1109/JSTARS.2020.2973920
    [24] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE T. Image Process., 26 (2017), 3142–3155. http://dx.doi.org/10.1109/TIP.2017.2662206 doi: 10.1109/TIP.2017.2662206
    [25] Y. Meng, J. Zhang, A novel gray image denoising method using convolutional neural network, IEEE Access, 10 (2022), 49657–49676. http://dx.doi.org/10.1109/ACCESS.2022.3169131 doi: 10.1109/ACCESS.2022.3169131
    [26] G. Wang, Z. Pan, Z. Zhang, Deep CNN Denoiser prior for multiplicative noise removal, Multimed. Tools Appl., 78 (2019), 29007–29019. http://dx.doi.org/10.1007/s11042-018-6294-9 doi: 10.1007/s11042-018-6294-9
    [27] H. Tian, B. Fowler, A. E. Gamal, Analysis of temporal noise in CMOS photodiode active pixel sensor, IEEE J. Solid-St. Circ., 36 (2001), 92–101. http://dx.doi.org/10.1109/4.896233 doi: 10.1109/4.896233
    [28] J. Zhang, K. Hirakawa, Improved denoising via Poisson mixture modeling of image sensor noise, IEEE T. Image Process., 26 (2017), 1565–1578. http://dx.doi.org/10.1109/TIP.2017.2651365 doi: 10.1109/TIP.2017.2651365
    [29] D. Chen, X. Teng, Novel variational approach for generalized signal dependent noise removal, 2018 11th International Symposium on Computational Intelligence and Design (ISCID), 2 (2018), 380–384. http://dx.doi.org/10.1109/ISCID.2018.10187 doi: 10.1109/ISCID.2018.10187
    [30] J. Zhang, Y. Duan, Y. Lu, M. K. Ng, H. Chang, Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal, arXiv preprint arXiv: 1910.08206, 2019.
    [31] M. Ghulyani, M. Arigovindan, Fast roughness minimizing image restoration under mixed Poisson–Gaussian noise, IEEE T. Image Process., 30 (2021), 134–149. http://dx.doi.org/10.1109/TIP.2020.3032036 doi: 10.1109/TIP.2020.3032036
    [32] S. Huang, T. Lu, Z. Lu, J. Rong, X. Zhao, J. Li, CMOS image sensor fixed pattern noise calibration scheme based on digital filtering method, Microelectron. J., 124 (2022), 10543. http://dx.doi.org/10.1016/j.mejo.2022.105431 doi: 10.1016/j.mejo.2022.105431
    [33] S. Lee, M. G. Kang, Poisson-Gaussian noise reduction for X-Ray images based on local linear minimum mean square error shrinkage in nonsubsampled contourlet transform domain, IEEE Access, 9 (2021), 100637–100651. http://dx.doi.org/10.1109/ACCESS.2021.3097078 doi: 10.1109/ACCESS.2021.3097078
    [34] J. Zhang, K. Hirakawa, Improved denoising via Poisson mixture modeling of image sensor noise, IEEE T. Image Process., 26 (2017), 1565–1578. http://dx.doi.org/10.1109/TIP.2017.2651365 doi: 10.1109/TIP.2017.2651365
    [35] A. Repetti, E. Chouzenoux, J. Pesquet, A penalized weighted least squares approach for restoring data corrupted with signal-dependent noise, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), (2012), 1553–1557.
    [36] K. Hirakawa, T. W. Parks, Image denoising using total least squares, IEEE T. Image Process., 15 (2006), 2730–2742. http://dx.doi.org/10.1109/TIP.2006.877352 doi: 10.1109/TIP.2006.877352
    [37] Y. Qiu, Z. Gan, Y. Fan, X. Zhu, An adaptive image denoising method for mixture Gaussian noise, 2011 International Conference on Wireless Communications and Signal Processing (WCSP), (2011), 1–5. http://dx.doi.org/10.1109/WCSP.2011.6096774 doi: 10.1109/WCSP.2011.6096774
    [38] J. Byun, S. Cha, T. Moon, FBI-Denoiser: Fast blind image denoiser for Poisson-Gaussian noise, IEEE Conference on Computer Vision and Pattern Recognition, (2021), 5768–5777. http://dx.doi.org/10.1109/CVPR46437.2021.00571 doi: 10.1109/CVPR46437.2021.00571
    [39] D. L. Donoho, De-noising by soft-thresholding, IEEE T. Inform. Theory, 41 (1995), 613–627. https://doi.org/10.1109/18.382009 doi: 10.1109/18.382009
    [40] J. Immerkær, Fast noise variance estimation, Comput. Vis. Image Und., 64 (1996), 300–302. http://dx.doi.org/10.1006/cviu.1996.0060 doi: 10.1006/cviu.1996.0060
    [41] D. Zoran, Y. Weiss, Scale invariance and noise in natural images, 2009 IEEE 12th International Conference on Computer Vision, (2009), 2209–2216. https://doi.org/10.1109/ICCV.2009.5459476 doi: 10.1109/ICCV.2009.5459476
    [42] S. Zhu, Z. Yu, Self-guided filter for image denoising, IET Image Prosess, 14 (2020), 2561–2566. http://dx.doi.org/10.1049/iet-ipr.2019.1471 doi: 10.1049/iet-ipr.2019.1471
    [43] L. Lu, W. Jin, X. Wang, Non-local means image denoising with a soft threshold, IEEE Signal Proc. Lett., 22 (2015), 833–837. http://dx.doi.org/10.1109/LSP.2014.2371332 doi: 10.1109/LSP.2014.2371332
    [44] D. -G. Kim, Y. Ali, M. A. Farooq, A. Mushtaq, M. A. A. Rehman, Z. H. Shamsi, Hybrid Deep Learning Framework for Reduction of Mixed Noise via Low Rank Noise Estimation, IEEE Access, 10 (2022), 46738–46752. http://dx.doi.org/10.1109/ACCESS.2022.3170490 doi: 10.1109/ACCESS.2022.3170490
    [45] D. H. Shin, R. H. Park, S. Yang, J. H. Jung, Block-based noise estimation using adaptive Gaussian filtering, IEEE T. Consum. Electr., 51 (2005), 218–226. http://dx.doi.org/10.1109/TCE.2005.1405723 doi: 10.1109/TCE.2005.1405723
    [46] A. Danielyan, A. Foi, Noise variance estimation in nonlocal transform domain, 2009 International Workshop on Local and Non-Local Approximation in Image Processing, (2009), 41–45. https://doi.org/10.1109/LNLA.2009.5278404 doi: 10.1109/LNLA.2009.5278404
    [47] X. Liu, M. Tanaka, M. Okutomi, Noise level estimation using weak textured patches of a single noisy image, 2012 19th IEEE International Conference on Image Processing, (2012), 665–668. http://dx.doi.org/10.1109/ICIP.2012.6466947 doi: 10.1109/ICIP.2012.6466947
    [48] X. Liu, M. Tanaka, M. Okutomi, Estimation of signal dependent noise parameters from a single image, 2013 IEEE International Conference on Image Processing, (2013), 79–82. http://dx.doi.org/10.1109/ICIP.2013.6738017 doi: 10.1109/ICIP.2013.6738017
    [49] C. Sutour, A.-C. Deledalle, F.-J. Aujol, Estimation of the noise level function based on a non-parametric detection of homogeneous image regions, SIAM J. Imaging Sci., 8 (2015), 1–31. http://dx.doi.org/10.1137/15M1012682 doi: 10.1137/15M1012682
    [50] Z. Wang, Z. Huang, Y. Xu, Y. Zhang, X. Li, X. Li, et al., Image Noise Level Estimation by Employing Chi-Square Distribution, 2021 IEEE 21st International Conference on Communication Technology (ICCT), (2021), 1158–1161. http://dx.doi.org/10.1109/ICCT52962.2021.9657946 doi: 10.1109/ICCT52962.2021.9657946
    [51] V. A. Pimpalkhute, R. Page, A. Kothari, K. M. Bhurchandi, V. M. Kamble, Digital image noise estimation using DWT coefficients, IEEE T. Image Process., 30 (2021), 1962–1972. http://dx.doi.org/10.1109/TIP.2021.3049961 doi: 10.1109/TIP.2021.3049961
    [52] J. Sijbers, A. den Dekker, Maximum likelihood estimation of signal amplitude and noise variance from MR data, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 51 (2004), 586–594. http://dx.doi.org/10.1002/mrm.10728 doi: 10.1002/mrm.10728
    [53] M. W. Wu, Y. Jin, Y. Li, T. Song, P. Y. Kam, Maximum-likelihood, magnitude-based, amplitude and noise variance estimation, IEEE Signal Proc. Lett., 28 (2021), 414–418. http://dx.doi.org/10.1109/LSP.2021.3055464 doi: 10.1109/LSP.2021.3055464
    [54] A. G. Vostretsov, S. G. Filatova, The Estimation of Parameters of Pulse Signals Having an Unknown Form That Are Observed against the Background of the Additive Mixture of the White Gaussian Noise and a Linear Component with Unknown Parameters, Journal of Communications Technology and Electronics, 66 (2021), 938–947. http://dx.doi.org/10.1134/S106422692108009X doi: 10.1134/S106422692108009X
    [55] R. A. Fisher, On the mathematical foundations of theoretical statistics, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222 (1922), 309–368. http://dx.doi.org/10.1098/rsta.1922.0009 doi: 10.1098/rsta.1922.0009
    [56] Y. Ouyang, S. Wang, L. Zhang, Quantum optical interferometry via the photon-added two-mode squeezed vacuum states, J. Opt. Soc. Am. B, 33 (2016), 1373–1381. https://doi.org/10.1364/JOSAB.33.001373 doi: 10.1364/JOSAB.33.001373
    [57] G. C. Knee, W. J. Munro, Fisher information versus signal-to-noise ratio for a split detector, PHYS. REV. A, 92 (2015), 012130. http://dx.doi.org/10.1103/PhysRevA.92.012130 doi: 10.1103/PhysRevA.92.012130
    [58] J. Chao, E. S. Ward, R. J. Ober, Fisher information theory for parameter estimation in single molecule microscopy: tutorial, J. Opt. Soc. Am. A, 33 (2016), B36–B57. https://doi.org/10.1364/JOSAA.33.000B36 doi: 10.1364/JOSAA.33.000B36
    [59] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, et al., Overcoming catastrophic forgetting in neural networks, Proceedings of the national academy of sciences, 114 (2017), 3521–3526. https://doi.org/10.1073/pnas.1611835114 doi: 10.1073/pnas.1611835114
    [60] J. Martens, New insights and perspectives on the natural gradient method, The Journal of Machine Learning Research, 21 (2020), 5776–5851.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1247) PDF downloads(47) Cited by(3)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog