Research article

Fuzzy differential subordination and superordination results for $ q $ -analogue of multiplier transformation

  • Received: 09 February 2023 Accepted: 27 March 2023 Published: 27 April 2023
  • MSC : 30A20, 30C45, 34A40

  • In this paper the authors combine the quantum calculus applications regarding the theories of differential subordination and superordination with fuzzy theory. These results are established by means of an operator defined as the $ q $-analogue of the multiplier transformation. Interesting fuzzy differential subordination and superordination results are derived by the authors involving the functions belonging to a new class of normalized analytic functions in the open unit disc $ U $ which is defined and investigated here by using this $ q $-operator.

    Citation: Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor. Fuzzy differential subordination and superordination results for $ q $ -analogue of multiplier transformation[J]. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794

    Related Papers:

  • In this paper the authors combine the quantum calculus applications regarding the theories of differential subordination and superordination with fuzzy theory. These results are established by means of an operator defined as the $ q $-analogue of the multiplier transformation. Interesting fuzzy differential subordination and superordination results are derived by the authors involving the functions belonging to a new class of normalized analytic functions in the open unit disc $ U $ which is defined and investigated here by using this $ q $-operator.



    加载中


    [1] H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications, Chichester: Halsted Press, New York: John Wiley and Sons, 1989,329–354.
    [2] O. P. Ahuja, A. Çetinkaya, Use of Quantum Calculus approach in Mathematical Sciences and its role in geometric function theory, AIP Conf. Proc., 2095 (2019), 020001. https://doi.org/10.1063/1.5097511 doi: 10.1063/1.5097511
    [3] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344.
    [4] S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. http://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [5] M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving $q$-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5
    [6] B. Khan, H. M. Srivastava, S. Arjika, S. Khan, N. Khan, Q.Z. Ahmad, A certain $q$-Ruscheweyh type derivative operator and its applications involving multivalent functions, Adv. Differ. Equ., 2021 (2021), 279. https://doi.org/10.1186/s13662-021-03441-6 doi: 10.1186/s13662-021-03441-6
    [7] M. Raza, H. M. Srivastava, M. Arif, Coefficient estimates for a certain family of analytic functions involving a $q$-derivative operator, Ramanujan J., 53 (2021), 53–71. https://doi.org/10.1007/s11139-020-00338-y doi: 10.1007/s11139-020-00338-y
    [8] E. Amini, M. Fardi, S. Al-Omari, K. Nonlaopon, Results on Univalent Functions Defined by $q$-Analogues of Sălăgean and Ruscheweh Operators, Symmetry, 14 (2022), 1725. https://doi.org/10.3390/sym14081725 doi: 10.3390/sym14081725
    [9] A. Alb Lupaş, Subordination Results on the $q$-Analogue of the Sălăgean Differential Operator, Symmetry, 14 (2022), 1744. https://doi.org/10.3390/sym14081744 doi: 10.3390/sym14081744
    [10] S. B. Hadid, R. W. Ibrahim, S. Momani, Multivalent Functions and Differential Operator Extended by the Quantum Calculus, Fractal Fract., 6 (2022), 354. https://doi.org/10.3390/fractalfract6070354 doi: 10.3390/fractalfract6070354
    [11] K. I. Noor, S. Riaz, M. A. Noor, On $q$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11.
    [12] S. A. Shah, K. I. Noor, Study on $q$-analogue of certain family of linear operators, Turkish J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41
    [13] S. A. Shah, L.-I. Cotîrlă, A. Cătaş, C. Dubău, G. Cheregi, A Study of Spiral-Like Harmonic Functions Associated with Quantum Calculus, J. Funct. Spaces, 2022 (2022), 5495011. https://doi.org/10.1155/2022/5495011 doi: 10.1155/2022/5495011
    [14] S. A. Shah, E. E. Ali, A. Cătaş, A. M. Albalahi, On fuzzy differential subordination associated with $q$-difference operator, AIMS Mathematics, 8 (2023), 6642–6650. https://doi.org/10.3934/math.2023336 doi: 10.3934/math.2023336
    [15] L. A. Zadeh, Fuzzy Sets, Inf. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X
    [16] I. Dzitac, F. G. Filip, M. J. Manolescu, Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh, Int. J. Comput. Commun. Control, 12 (2017), 748–789. http://doi.org/10.15837/IJCCC.2017.6.3111 doi: 10.15837/IJCCC.2017.6.3111
    [17] S. Dzitac, S. Nădăban, Soft Computing for Decision-Making in Fuzzy Environments: A Tribute to Professor Ioan Dzitac, Mathematics, 9 (2021), 1701. https://doi.org/10.3390/math9141701 doi: 10.3390/math9141701
    [18] G. I. Oros, G. Oros, The notion of subordination in fuzzy sets theory, Gen. Math., 19 (2011), 97–103.
    [19] G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis, 30 (2012), 55–64.
    [20] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, New York: Marcel Dekker, 2000.
    [21] W. G. Atshan, K. O. Hussain, Fuzzy Differential Superordination, Theory Appl. Math. Comput. Sci., 7 (2017), 27–38.
    [22] G. I. Oros, Univalence criteria for analytic functions obtained using fuzzy differential subordinations, Turk. J. Math., 46 (2022), 1478–1491. https://doi.org/10.55730/1300-0098.3174 doi: 10.55730/1300-0098.3174
    [23] Ş. Altınkaya, A. K. Wanas, Some properties for fuzzy differential subordination defined by Wanas operator, Earthline J. Math. Sci., 4 (2020), 51–62. https://doi.org/10.34198/ejms.4120.5162 doi: 10.34198/ejms.4120.5162
    [24] A. K. Wanas, Fuzzy differential subordinations of analytic functions invloving Wanas operator, Ikonian J. Math., 2 (2020), 1–9.
    [25] K. I Noor, M. A. Noor, Fuzzy Differential Subordination Involving Generalized Noor-Salagean Operator, Inf. Sci. Lett., 11 (2022), 1905–1911. https://doi.org/10.18576/isl/110606 doi: 10.18576/isl/110606
    [26] A. Alb Lupaş, G. I. Oros, New Applications of Sălăgean and Ruscheweyh Operators for Obtaining Fuzzy Differential Subordinations, Mathematics, 9 (2021), 2000. https://doi.org/10.3390/math9162000 doi: 10.3390/math9162000
    [27] S. M. El-Deeb, A. Alb Lupaş, Fuzzy differential subordinations associated with an integral operator, An. Univ. Oradea Fasc. Mat., XXVII (2020), 133–140.
    [28] A. Alb Lupaş, A. Cătaş, Differential subordination and superordination results for $q$-analogue of multiplier transformation, Fractal Fract., 7 (2023), 199. https://doi.org/10.3390/fractalfract7020199 doi: 10.3390/fractalfract7020199
    [29] G. I. Oros, G. Oros, Dominant and best dominant for fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 239–248.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(919) PDF downloads(48) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog