Under consideration is the discrete three-field Blaszak-Marciniak lattice equation. Firstly, this discrete equation is mapped to the continuous nonlinear equations under the continuous limit. Secondly, the generalized $ (m, 3N-m) $-fold Darboux transformation of this discrete equation is constructed and established. Finally, by applying the resulting Darboux transformation, some singular rational solutions and mixed exponential-rational solutions are presented, in particular, their limit state analysis and singular trajectories are analyzed graphically. These results may be helpful to explain some relevant physical phenomena.
Citation: Ting Zhang, Xiaoyong Wen. Discrete generalized Darboux transformation and rational solutions for the three-field Blaszak-Marciniak lattice equation[J]. AIMS Mathematics, 2023, 8(7): 15553-15568. doi: 10.3934/math.2023793
Under consideration is the discrete three-field Blaszak-Marciniak lattice equation. Firstly, this discrete equation is mapped to the continuous nonlinear equations under the continuous limit. Secondly, the generalized $ (m, 3N-m) $-fold Darboux transformation of this discrete equation is constructed and established. Finally, by applying the resulting Darboux transformation, some singular rational solutions and mixed exponential-rational solutions are presented, in particular, their limit state analysis and singular trajectories are analyzed graphically. These results may be helpful to explain some relevant physical phenomena.
[1] |
M. Blaszak, K. Marciniak, R-matrix approach to lattice integrable systems, J. Math. Phys., 35 (1994), 4661–4682. https://doi.org/10.1063/1.530807 doi: 10.1063/1.530807
![]() |
[2] |
D. J. Zhang, D. Y. Chen, The conservation laws of some discrete soliton systems, Chaos Soliton. Fract., 14 (2002), 573–579. https://doi.org/10.1016/S0960-0779(01)00238-7 doi: 10.1016/S0960-0779(01)00238-7
![]() |
[3] |
Y. T. Wu, X. G. Geng, A new integrable symplectic map associated with lattice soliton equations, J. Math. Phys., 37 (1996), 2338. https://doi.org/10.1063/1.531512 doi: 10.1063/1.531512
![]() |
[4] |
X. B. Hu, Z. N. Zhu, Some new results on the Blaszak-Marciniak lattice: Bäcklund transformation and nonlinear superposition formula, J. Math. Phys., 39 (1998), 4766. https://doi.org/10.1063/1.532535 doi: 10.1063/1.532535
![]() |
[5] |
X. B. Hu, H. W. Tam, Some new results on the Blaszak-Marciniak 3-field and 4-field lattices, Rep. Math. Phys., 46 (2000), 99–105. https://doi.org/10.1016/S0034-4877(01)80012-4 doi: 10.1016/S0034-4877(01)80012-4
![]() |
[6] |
D. J. Zhang, D. Y. Chen, Hamiltonian structure of discrete soliton systems, J. Phys. A, 35 (2002), 7225–7241. https://doi.org/10.1088/0305-4470/35/33/316 doi: 10.1088/0305-4470/35/33/316
![]() |
[7] |
R. Sahadevan, S. Khousalya, Master symmetries for Volterra equation, Belov-Chaltikian and Blaszak-Marciniak lattice equations, J. Math. Anal. Appl., 280 (2003), 241–251. https://doi.org/10.1016/S0022-247X(03)00032-5 doi: 10.1016/S0022-247X(03)00032-5
![]() |
[8] |
J. B. Zhang, J. Ji, Y. Q. Yao, From the conservation laws to the Hamiltonian structures of discrete soliton systems, Phys. Scr., 84 (2011), 015001. https://doi.org/10.1088/0031-8949/84/01/015001 doi: 10.1088/0031-8949/84/01/015001
![]() |
[9] |
X. Y. Wen, X. H. Meng, X. G. Xu, J. T. Wang, N-fold Darboux transformation and explicit solutions in terms of the determinant for the three-field Blaszak-Marciniak lattice, Appl. Math. Lett., 26 (2013), 1076–1081. https://doi.org/10.1016/j.aml.2013.06.004 doi: 10.1016/j.aml.2013.06.004
![]() |
[10] |
D. S. Wang, Q. Li, X. Y. Wen, L. Liu, Matrix spectral problems and integrability aspects of the Blaszak-Marciniak lattice equations, Rep. Math. Phys., 86 (2020), 325–353. https://doi.org/10.1016/S0034-4877(20)30087-2 doi: 10.1016/S0034-4877(20)30087-2
![]() |
[11] | R. Hirota, The direct method in soliton theory, New York: Cambridge University Press, 2004. |
[12] |
W. X. Zhang, Y. Q. Liu, Solitary wave solutions and integrability for generalized nonlocal complex modified Korteweg-de Vries (cmKdV) equations, AIMS Math., 6 (2021), 11046–11075. https://doi.org/10.3934/math.2021641 doi: 10.3934/math.2021641
![]() |
[13] | M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge: Cambridge University Press, 1991. |
[14] |
J. Weiss, M. Tabor, G. Carnevale, The Painleve property for partial differential equations, J. Math. Phys., 24 (1983), 522–526. https://doi.org/10.1063/1.525721 doi: 10.1063/1.525721
![]() |
[15] |
Q. L. Zhao, M. A. Amin, X. Y. Li, Classical Darboux transformation and exact soliton solutions of a two-component complex short pulse equation, AIMS Math., 8 (2022), 8811–8828. https://doi.org/10.3934/math.2023442 doi: 10.3934/math.2023442
![]() |
[16] |
M. Wadati, Transformation theories for nonlinear discrete systems, Prog. Theor. Phys. Suppl., 59 (1976), 36–63. https://doi.org/10.1143/PTPS.59.36 doi: 10.1143/PTPS.59.36
![]() |
[17] |
Manjeet, R. K. Gupta, On nonclassical symmetries, Painlevé analysis and singular, periodic and solitary wave solutions of generalized Hirota-Satsuma coupled KdV system, Commun. Nonlinear Sci. Numer. Simulat., 115 (2022), 106710. https://doi.org/10.1016/j.cnsns.2022.106710 doi: 10.1016/j.cnsns.2022.106710
![]() |
[18] |
N. A. Kudryashov, A. Biswas, A. G. Borodina, Y. Yıldırım, H. M. Alshehri, Painlevé analysis and optical solitons for a concatenated model, Optik, 272 (2023), 170255. https://doi.org/10.1016/j.ijleo.2022.170255 doi: 10.1016/j.ijleo.2022.170255
![]() |
[19] | X. Wang, Darboux transformation for two discrete soliton equations, Zhengzhou China: Zhengzhou University, 2012. |
[20] | V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Berlin: Springer, 1991. |
[21] |
X. Y. Wen, Y. Q. Yang, Z. Y. Yan, Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation, Phys. Rev. E, 92 (2015), 012917. https://doi.org/10.1103/PhysRevE.92.012917 doi: 10.1103/PhysRevE.92.012917
![]() |
[22] |
S. Dong, Z. Z. Lan, B. Gao, Y. J. Shen, Bäcklund transformation and multi-soliton solutions for the discrete Korteweg-de Vries equation, Appl. Math. Lett., 125 (2022), 107747. https://doi.org/10.1016/j.aml.2021.107747 doi: 10.1016/j.aml.2021.107747
![]() |
[23] |
X. P. Xin, Y. R. Xia, L. H. Zhang, H. Z. Liu, Bäcklund transformations, symmetry reductions and exact solutions of (2+1)-dimensional nonlocal DS equations, Appl. Math. Lett., 132 (2022), 108157. https://doi.org/10.1016/j.aml.2022.108157 doi: 10.1016/j.aml.2022.108157
![]() |
[24] |
X. Y. Wen, Z. Y. Yan, B. A. Malomed, Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: exact solutions and stability, Chaos, 26 (2016), 123110. http://doi.org/10.1063/1.4972111 doi: 10.1063/1.4972111
![]() |
[25] |
X. Y. Wen, Z. Y. Yan, Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz-Ladik equation, J. Math. Phys., 59 (2018), 073511. https://doi.org/10.1063/1.5048512 doi: 10.1063/1.5048512
![]() |
[26] |
X. K. Liu, X. Y. Wen, Z. Lin, Continuous limit and position adjustable rogue wave solutions for the semi-discrete complex coupled system associated with 4$\times$4 Lax pair, Appl. Math. Lett., 133 (2022), 108279. https://doi.org/10.1016/j.aml.2022.108279 doi: 10.1016/j.aml.2022.108279
![]() |
[27] |
T. Zhang, X. Y. Wen, Continuous limit, higher-order rational solutions and relevant dynamical analysis for Belov-Chaltikian lattice equation with 3$\times$3 Lax pair, Pramana J. Phys., 97 (2023), 31. https://doi.org/10.1007/s12043-022-02502-z doi: 10.1007/s12043-022-02502-z
![]() |
[28] |
P. Liu, M. Jia, S. Y. Lou, Lax pair and exact solutions of a discrete coupled system related to coupled KdV and coupled mKdV equations, Phys. Scr., 76 (2007), 674–679. https://doi.org/10.1088/0031-8949/76/6/015 doi: 10.1088/0031-8949/76/6/015
![]() |