Research article

Discrete generalized Darboux transformation and rational solutions for the three-field Blaszak-Marciniak lattice equation

  • Under consideration is the discrete three-field Blaszak-Marciniak lattice equation. Firstly, this discrete equation is mapped to the continuous nonlinear equations under the continuous limit. Secondly, the generalized (m,3Nm)-fold Darboux transformation of this discrete equation is constructed and established. Finally, by applying the resulting Darboux transformation, some singular rational solutions and mixed exponential-rational solutions are presented, in particular, their limit state analysis and singular trajectories are analyzed graphically. These results may be helpful to explain some relevant physical phenomena.

    Citation: Ting Zhang, Xiaoyong Wen. Discrete generalized Darboux transformation and rational solutions for the three-field Blaszak-Marciniak lattice equation[J]. AIMS Mathematics, 2023, 8(7): 15553-15568. doi: 10.3934/math.2023793

    Related Papers:

    [1] Muqeem Ahmad, Mobin Ahmad, Fatemah Mofarreh . Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds. AIMS Mathematics, 2023, 8(8): 19526-19545. doi: 10.3934/math.2023996
    [2] Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan . Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416
    [3] Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373
    [4] Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085
    [5] Oğuzhan Bahadır . On lightlike geometry of indefinite Sasakian statistical manifolds. AIMS Mathematics, 2021, 6(11): 12845-12862. doi: 10.3934/math.2021741
    [6] Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144
    [7] Fatimah Alghamdi, Fatemah Mofarreh, Akram Ali, Mohamed Lemine Bouleryah . Some rigidity theorems for totally real submanifolds in complex space forms. AIMS Mathematics, 2025, 10(4): 8191-8202. doi: 10.3934/math.2025376
    [8] Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069
    [9] Mehmet Atçeken, Tuğba Mert . Characterizations for totally geodesic submanifolds of a K-paracontact manifold. AIMS Mathematics, 2021, 6(7): 7320-7332. doi: 10.3934/math.2021430
    [10] Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603
  • Under consideration is the discrete three-field Blaszak-Marciniak lattice equation. Firstly, this discrete equation is mapped to the continuous nonlinear equations under the continuous limit. Secondly, the generalized (m,3Nm)-fold Darboux transformation of this discrete equation is constructed and established. Finally, by applying the resulting Darboux transformation, some singular rational solutions and mixed exponential-rational solutions are presented, in particular, their limit state analysis and singular trajectories are analyzed graphically. These results may be helpful to explain some relevant physical phenomena.



    The concept of lightlike submanifolds in geometry was initially established and expounded upon in a work produced by Duggal and Bejancu [1]. A nondegenerate screen distribution was employed in order to produce a nonintersecting lightlike transversal vector bundle of the tangent bundle. They defined the CR-lightlike submanifold as a generalization of lightlike real hypersurfaces of indefinite Kaehler manifolds and showed that CR-lightlike submanifolds do not contain invariant and totally real lightlike submanifolds. Further, they defined and studied GCR-lightlike submanifolds of Kaehler manifolds as an umbrella of invariant submanifolds, screen real submanifolds, and CR-lightlike and SCR-lightlike submanifolds in [2,3], respectively. Subsequently, B. Sahin and R. Gunes investigated geodesic property of CR-lightlike submanifolds [4] and the integrability of distributions in CR-lightlike submanifolds [5]. In the year 2010, Duggal and Sahin published a book [6]pertaining to the field of differential geometry, specifically focusing on the study of lightlike submanifolds. This book provides a comprehensive examination of recent advancements in lightlike geometry, encompassing novel geometric findings, accompanied by rigorous proofs, and exploring their practical implications in the field of mathematical physics. The investigation of the geometric properties of lightlike hypersurfaces and lightlike submanifolds has been the subject of research in several studies (see [7,8,9,10,11,12,13,14]).

    Crasmareanu and Hretcanu[15] created a special example of polynomial structure [16] on a differentiable manifold, and it is known as the golden structure (¯M,g). Hretcanu C. E. [17] explored Riemannian submanifolds with the golden structure. M. Ahmad and M. A. Qayyoom studied geometrical properties of Riemannian submanifolds with golden structure [18,19,20,21] and metallic structure [22,23]. The integrability of golden structures was examined by A. Gizer et al. [24]. Lightlike hypersurfaces of a golden semi-Riemannian manifold was investigated by N. Poyraz and E. Yasar [25]. The golden structure was also explored in the studies [26,27,28,29].

    In this research, we investigate the CR-lightlike submanifolds of a golden semi-Riemannian manifold, drawing inspiration from the aforementioned studies. This paper has the following outlines: Some preliminaries of CR-lightlike submanifolds are defined in Section 2. We establish a number of properties of CR-lightlike submanifolds on golden semi-Riemannian manifolds in Section 3. In Section 4, we look into several CR-lightlike submanifolds characteristics that are totally umbilical. We provide a complex illustration of CR-lightlike submanifolds of a golden semi-Riemannian manifold in the final section.

    Assume that (¯,g) is a semi-Riemannian manifold with (k+j)-dimension, k,j1, and g as a semi-Riemannian metric on ¯. We suppose that ¯ is not a Riemannian manifold and the symbol q stands for the constant index of g.

    [15] Let ¯ be endowed with a tensor field ψ of type (1,1) such that

    ψ2=ψ+I, (2.1)

    where I represents the identity transformation on Γ(Υ¯). The structure ψ is referred to as a golden structure. A metric g is considered ψ-compatible if

    g(ψγ,ζ)=g(γ,ψζ) (2.2)

    for all γ, ζ vector fields on Γ(Υ¯), then (¯,g,ψ) is called a golden Riemannian manifold. If we substitute ψγ into γ in (2.2), then from (2.1) we have

    g(ψγ,ψζ)=g(ψγ,ζ)+g(γ,ζ). (2.3)

    for any γ,ζΓ(Υ¯).

    If (¯,g,ψ) is a golden Riemannian manifold and ψ is parallel with regard to the Levi-Civita connection ¯ on ¯:

    ¯ψ=0, (2.4)

    then (¯,g,ψ) is referred to as a semi-Riemannian manifold with locally golden properties.

    The golden structure is the particular case of metallic structure [22,23] with p=1, q=1 defined by

    ψ2=pψ+qI,

    where p and q are positive integers.

    [1] Consider the case where is a lightlike submanifold of k of ¯. There is the radical distribution, or Rad(Υ), on that applies to this situation such that Rad(Υ)=ΥΥ, p. Since RadΥ has rank r0, is referred to as an r-lightlike submanifold of ¯. Assume that is a submanifold of that is r-lightlike. A screen distribution is what we refer to as the complementary distribution of a Rad distribution on Υ, then

    Υ=RadΥS(Υ).

    As S(Υ) is a nondegenerate vector sub-bundle of Υ¯|, we have

    Υ¯|=S(Υ)S(Υ),

    where S(Υ) consists of the orthogonal vector sub-bundle that is complementary to S(Υ) in Υ¯|. S(Υ),S(Υ) is an orthogonal direct decomposition, and they are nondegenerate.

    S(Υ)=S(Υ)S(Υ).

    Let the vector bundle

    tr(Υ)=ltr(Υ)S(Υ).

    Thus,

    Υ¯=Υtr(Υ)=S(Υ)S(Υ)(Rad(Υ)ltr(Υ).

    Assume that the Levi-Civita connection is ¯ on ¯. We have

    ¯γζ=γζ+h(γ,ζ),γ,ζΓ(Υ) (2.5)

    and

    ¯γζ=Ahζ+γh,γΓ(Υ)andhΓ(tr(Υ)), (2.6)

    where {γζ,Ahγ} and {h(γ,ζ),γh} belongs to Γ(Υ) and Γ(tr(Υ)), respectively.

    Using projection L:tr(Υ)ltr(Υ), and S:tr(Υ)S(Υ), we have

    ¯γζ=γζ+hl(γ,ζ)+hs(γ,ζ), (2.7)
    ¯γ=Aγ+lγ+λs(γ,), (2.8)

    and

    ¯γχ=Aχγ+sγ+λl(γ,χ) (2.9)

    for any γ,ζΓ(Υ),Γ(ltr(Υ)), and χΓ(S(Υ)), where hl(γ,ζ)=Lh(γ,ζ),hs(γ,ζ)=Sh(γ,ζ),lγ,λl(γ,χ)Γ(ltr(T)),sγλs(γ,)Γ(S(Υ)), and γζ,Aγ,AχγΓ(Υ).

    The projection morphism of Υ on the screen is represented by P, and we take the distribution into consideration.

    γPζ=γPζ+h(γ,Pζ),γξ=Aξγ+tγξ, (2.10)

    where γ,ζΓ(Υ),ξΓ(Rad(Υ)).

    Thus, we have the subsequent equation.

    g(h(γ,Pζ),)=g(Aγ,Pζ), (2.11)

    Consider that ¯ is a metric connection. We get

    (γg)(ζ,η)=g(hl(γ,ζ),η)+g(hl(γ,ζη),ζ). (2.12)

    Using the characteristics of a linear connection, we can obtain

    (γhl)(ζ,η)=lγ(hl(ζ,η))hl(¯γζ,η)hl(ζ,¯γη), (2.13)
    (γhs)(ζ,η)=sγ(hs(ζ,η))hs(¯γζ,η)hs(ζ,¯γη). (2.14)

    Based on the description of a CR-lightlike submanifold in [4], we have

    Υ=λλ,

    where λ=Rad(Υ)ψRad(Υ)λ0.

    S and Q stand for the projection on λ and λ, respectively, then

    ψγ=fγ+wγ

    for γ,ζΓ(Υ), where fγ=ψSγ and wγ=ψQγ.

    On the other hand, we have

    ψζ=Bζ+Cζ

    for any ζΓ(tr(Υ)), BζΓ(Υ) and CζΓ(tr(Υ)), unless 1 and 2 are denoted as ψL1 and ψL2, respectively.

    Lemma 2.1. Assume that the screen distribution is totally geodesic and that is a CR-lightlike submanifold of the golden semi-Riemannian manifold, then γζΓ(S(ΥN)), where γ,ζΓ(S(Υ)).

    Proof. For γ,ζΓ(S(Υ)),

    g(γζ,)=g(¯γζh(γ,ζ),)=g(ζ,¯γ).

    Using (2.8),

    g(γζ,)=g(ζ,Aγ+γ)=g(ζ,Aγ).

    Using (2.11),

    g(γζ,)=g(h(γ,ζ),).

    Since screen distribution is totally geodesic, h(γ,ζ)=0,

    g(¯γζ,)=0.

    Using Lemma 1.2 in [1] p.g. 142, we have

    γζΓ(S(Υ)),

    where γ,ζΓ(S(Υ)).

    Theorem 2.2. Assume that is a locally golden semi-Riemannian manifold ¯ with CR-lightlike properties, then γψγ=ψγγ for γΓ(λ0).

    Proof. Assume that γ,ζΓ(λ0). Using (2.5), we have

    g(γψγ,ζ)=g(¯γψγh(γ,ψγ),ζ)g(γψγ,ζ)=g(ψ(¯γγ),ζ)g(γψγ,ζ)=g(ψ(γγ),ζ),g(γψγψ(γγ),ζ)=0.

    Nondegeneracy of λ0 implies

    γψγ=ψ(γγ),

    where γΓ(λ0).

    Definition 3.1. [4] A CR-lightlike submanifold of a golden semi-Riemannian manifold is mixed geodesic if h satisfies

    h(γ,α)=0,

    where h stands for second fundamental form, γΓ(λ), and αΓ(λ).

    For γ,ζΓ(λ) and α,βΓ(λ) if

    h(γ,ζ)=0

    and

    h(α,β)=0,

    then it is known as λ-geodesic and λ-geodesic, respectively.

    Theorem 3.2. Assume is a CR-lightlike submanifold of ¯, which is a golden semi-Riemannian manifold. is totally geodesic if

    (Lg)(γ,ζ)=0

    and

    (Lχg)(γ,ζ)=0

    for α,βΓ(Υ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. Since is totally geodesic, then

    h(γ,ζ)=0

    for γ,ζΓ(Υ).

    We know that h(γ,ζ)=0 if

    g(h(γ,ζ),ξ)=0

    and

    g(h(γ,ζ),χ)=0.
    g(h(γ,ζ),ξ)=g(¯γζγζ,ξ)=g(ζ,[γ,ξ]+¯ξγ=g(ζ,[γ,ξ])+g(γ,[ξ,ζ])+g(¯ζξ,γ)=(Lξg)(γ,ζ)+g(¯ζξ,γ)=(Lξg)(γ,ζ)g(ξ,h(γ,ζ)))2g(h(γ,ζ)=(Lξg)(γ,ζ).

    Since g(h(γ,ζ),ξ)=0, we have

    (Lξg)(γ,ζ)=0.

    Similarly,

     g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,[γ,χ])+g(γ,[χ,ζ])+g(¯ζχ,γ)=(Lχg)(γ,ζ)+g(¯ζχ,γ)2g(h(γ,ζ),χ)=(Lχg)(γ,ζ).

    Since g(h(γ,ζ),χ)=0, we get

    (Lχg)(γ,ζ)=0

    for χΓ(S(Υ)).

    Lemma 3.3. Assume that ¯ is a golden semi-Riemannian manifold whose submanifold is CR-lightlike, then

    g(h(γ,ζ),χ)=g(Aχγ,ζ)

    for γΓ(λ),ζΓ(λ) and χΓ(S(Υ)).

    Proof. Using (2.5), we get

    g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,¯γχ).

    From (2.9), it follows that

    g(h(γ,ζ),χ)=g(ζ,Aχγ+sγχ+λs(γ,χ))=g(ζ,Aχγ)g(ζ,sγχ)g(ζ,λs(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ),

    where γΓ(λ),ζΓ(λ),χΓ(S(Υ)).

    Theorem 3.4. Assume that is a CR-lightlike submanifold of the golden semi-Riemannian manifold and ¯ is mixed geodesic if

    AξγΓ(λ0ψL1)

    and

    AχγΓ(λ0Rad(Υ)ψL1)

    for γΓ(λ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. For γΓ(λ),ζΓ(λ), and χΓ(S(Υ)), we get

    Using (2.5),

    g(h(γ,ζ),ξ)=g(¯γζγζ,ξ)=g(ζ,¯γξ).

    Again using (2.5), we obtain

    g(h(γ,ζ),ξ)=g(ζ,γξ+h(γ,ξ))=g(ζ,γξ).

    Using (2.10), we have

    g(h(γ,ζ),ξ)=g(ζ,Aξγ+tγξ)g(ζ,Aξγ)=0.

    Since the CR-lightlike submanifold is mixed geodesic, we have

    g(h(γ,ζ),ξ)=0
    g(ζ,Aξγ)=0
    AξγΓ(λ0ψL1),

    where γΓ(λ),ζΓ(λ).

    From (2.5), we get

    g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,¯γχ).

    From (2.9), we get

    g(h(γ,ζ),χ)=g(ζ,Aχγ+sγχ+λl(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ).

    Since, is mixed geodesic, then g(h(γ,ζ),χ)=0

    g(ζ,Aχγ)=0.
    AχγΓ(λ0Rad(Υ)ψ1).

    Theorem 3.5. Suppose that is a CR-lightlike submanifold of a golden semi-Riemannian manifold ¯, then is λ-geodesic if Aχη and Aξη have no component in 2ψRad(Υ) for ηΓ(λ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. From (2.5), we obtain

    g(h(η,β),χ)=g(¯ηβγζ,χ)=¯g(γζ,χ),

    where χ,βΓ(λ).

    Using (2.9), we have

    g(h(η,β),χ)=g(β,Aχη+sη+λl(η,χ))g(h(η,β),χ)=g(β,Aχη). (3.1)

    Since is λ-geodesic, then g(h(η,β),χ)=0.

    From (3.1), we get

    g(β,Aχη)=0.

    Now,

    g(h(η,β),ξ)=g(¯ηβηβ,ξ)=g(¯ηβ,ξ)=g(β,¯ηξ).

    From (2.10), we get

    g(h(η,β),ξ)=g(η,Aξη+tηξ)g(h(η,β),ξ)=g(Aξβ,η).

    Since is λ- geodesic, then

    g(h(η,β),ξ)=0
    g(Aξβ,η)=0.

    Thus, Aχη and Aξη have no component in M2ψRad(Υ).

    Lemma 3.6. Assume that ¯ is a golden semi-Riemannian manifold that has a CR-lightlike submanifold . Due to the distribution's integrability, the following criteria hold.

    (ⅰ) ψg(λl(ψγ,χ),ζ)g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)g(Aχγ,ψζ),

    (ⅱ) g(λl(ψγ),ξ)=g(Aχγ,ψξ),

    (ⅲ) g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ),

    where γ,ζΓ(Υ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. From Eq (2.9), we obtain

    g(λl(ψγ,χ),ζ)=g(¯ψγχ+Aχψγsψγχ,ζ)=g(χ,¯ψγζ)+g(Aχψγ,ζ).

    Using (2.5), we get

    g(λl(ψγ,χ),ζ)=g(χ,ψγζ+h(ψγ,ζ))+g(Aχψγ,ζ)=g(χ,h(γ,ψζ))+g(Aχψγ,ζ).

    Again, using (2.5), we get

    g(λl(ψγ,χ),ζ)=g(χ,¯γψζγψζ)+g(Aχψγ,ζ)=g(¯γχ,ψζ)+g(Aχψγ,ζ).

    Using (2.9), we have

    g(λl(ψγ,χ),ζ)=g(Aχγ+sγχ+λl(γ,χ),ψζ)+g(λl(ψγ,χ),ζ)g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)g(Aχγ,ψζ).

    (ⅱ) Using (2.9), we have

    g(λl(ψγ,χ),ξ)=g(Aχψγsψγχ+ψγχ,ξ)=g(Aχψγ,ξ)g(χ,¯ψγξ).

    Using (2.10), we get

    g(λl(ψγ,χ),ξ)=g(Aχψγ,ξ)+g(χ,Aξψγ)g(χ,tψγ,ξ)g(λl(ψγ),ξ)=g(Aχγ,ψξ).

    (ⅲ) Replacing ζ by ψξ in (ⅰ), we have

    ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),ψ2ξ)=g(Aχψγ,ψξ)g(Aχγ,ψ2ξ).

    Using Definition 2.1 in [18] p.g. 9, we get

    ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),(ψ+I)ξ)=g(Aχψγ,ψξ)g(Aχγ,(ψ+I)ξ)ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),ψξ)g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ)g(Aχγ,ξ).g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ).

    Definition 4.1. [12] A CR-lightlike submanifold of a golden semi-Riemannian manifold is totally umbilical if there is a smooth transversal vector field Htr Γ(Υ) that satisfies

    h(χ,η)=Hg(χ,η),

    where h is stands for second fundamental form and χ, η Γ(Υ).

    Theorem 4.2. Assume that the screen distribution is totally geodesic and that is a totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯, then

    Aψηχ=Aψχη,χ,ηΓλ.

    Proof. Given that ¯ is a golden semi-Riemannian manifold,

    ψ¯ηχ=¯ηψχ.

    Using (2.5) and (2.6), we have

    ψ(ηχ)+ψ(h(η,χ))=Aψχη+tηψχ. (4.1)

    Interchanging η and χ, we obtain

    ψ(χη)+ψ(h(χ,η))=Aψηχ+tχψη. (4.2)

    Subtracting Eqs (4.1) and (4.2), we get

    ψ(ηχχη)tηψχ+tχψη=AψηχAψχη. (4.3)

    Taking the inner product with γΓ(λ0) in (4.3), we have

    g(ψ(χη,γ)g(ψ(χη,γ)=g(Aψηχ,γ)g(Aψχη,γ).g(AψηχAψχη,γ)=g(χη,ψγ)g(χη,ψγ). (4.4)

    Now,

    g(χη,ψγ)=g(¯χηh(χ,η),ψγ)g(χη,ψγ)=g(η,(¯χψ)γψ(¯χγ)).

    Since ψ is parallel to ¯, i.e., ¯γψ=0,

    g(χη,ψγ)=ψ(¯χγ)).

    Using (2.7), we have

    g(χη,ψγ)=g(ψη,χγ+hs(χ,γ)+hl(χ,γ))g(χη,ψγ)=g(ψη,χγ)g(ψη,hs(χ,γ))g(ψη,hl(χ,γ)). (4.5)

    Since is a totally umbilical CR-lightlike submanifold and the screen distribution is totally geodesic,

    hs(χ,γ)=Hsg(χ,γ)=0

    and

    hl(χ,γ)=Hlg(χ,γ)=0,

    where χΓ(λ) and γΓ(λ0).

    From (4.5), we have

    g(χη,ψγ)=g(ψη,χγ).

    From Lemma 2.1, we get

    g(χη,ψγ)=0.

    Similarly,

    g(ηχ,ψγ)=0

    Using (4.4), we have

    g(AψηχAψχη,γ)=0.

    Since λ0 is nondegenerate,

    AψηχAψχη=0
    Aψηχ=Aψχη.

    Theorem 4.3. Let be the totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯. Consequently, 's sectional curvature, which is CR-lightlike, vanishes, resulting in ¯K(π)=0, for the entire CR-lightlike section π.

    Proof. We know that is a totally umbilical CR-lightlike submanifold of ¯, then from (2.13) and (2.14),

    (γhl)(ζ,ω)=g(ζ,ω)lγHlHl{(γg)(ζ,ω)}, (4.6)
    (γhs)(ζ,ω)=g(ζ,ω)sγHsHs{(γg)(ζ,ω)} (4.7)

    for a CR-lightlike section π=γω,γΓ(λ0),ωΓ(λ).

    From (2.12), we have (Ug)(ζ,ω)=0. Therefore, from (4.6) and (4.7), we get

    (γhl)(ζ,ω)=g(ζ,ω)lγHl, (4.8)
    (γhs)(ζ,ω)=g(ζ,ω)sγHs. (4.9)

    Now, from (4.8) and (4.9), we get

    {¯R(γ,ζ)ω}tr=g(ζ,ω)lγHlg(γ,ω)lζHl+g(ζ,ω)λl(γ,Hs)g(γ,ω)λl(ζ,Hs)+g(ζ,ω)sγHsg(γ,ω)sζHs+g(ζ,ω)λs(γ,Hl)g(γ,ω)λs(ζ,Hl). (4.10)

    For any βΓ(tr(Υ)), from Equation (4.10), we get

    ¯R(γ,ζ,ω,β)=g(ζ,ω)g(lγHl,β)g(γ,ω)g(lζHl,β)+g(ζ,ω)g(λl(γ,Hs),ζ)g(γ,ω)g(λl(ζ,Hs),β)+g(ζ,ω)g(sγHs,β)g(γ,ω)g(sζHs,β)+g(ζ,ω)g(λs(γ,Hl),β)g(γ,ω)g(λs(ζ,Hl,β).
    R(γ,ω,ψγ,ψω)=g(ω,ψγ)g(lγHl,ψω)g(γ,ψγ)g(lωHl,ψω)+g(ω,ψγ)g(λl(γ,Hs),ψω)g(γ,ψγ)g(λl(ω,Hs),ψω)+g(ω,ψγ)g(sγHs,ψω)g(γ,ψγ)g(sωHs,ψω)+g(ω,ψγ)g(λs(γ,Hl),ψω)g(γ,ψγ)g(λs(ω,Hl,ψU).

    For any unit vectors γΓ(λ) and ωΓ(λ), we have

    ¯R(γ,ω,ψγ,ψω)=¯R(γ,ω,γ,ω)=0.

    We have

    K(γ)=KN(γζ)=g(¯R(γ,ζ)ζ,γ),

    where

    ¯R(γ,ω,γ,ω)=g(¯R(γ,ω)γ,ω)

    or

    ¯R(γ,ω,ψγ,ψω)=g(¯R(γ,ω)ψγ,ψω)

    i.e.,

    ¯K(π)=0

    for all CR-sections π.

    Example 5.1. We consider a semi-Riemannian manifold R62 and a submanifold of co-dimension 2 in R62, given by equations

    υ5=υ1cosαυ2sinαυ3z4tanα,
    υ6=υ1sinαυ2cosαυ3υ4,

    where αR{π2+kπ; kz}. The structure on R62 is defined by

    ψ(υ1,υ2,υ3,υ4,υ5,υ6)=(¯ϕ υ1,¯ϕυ2,ϕυ3,ϕυ4,ϕυ5,ϕυ6).

    Now,

    ψ2(υ1,υ2,υ3,υ4,υ5,υ6)=((¯ϕ+1) υ1,(¯ϕ+1)υ2,(ϕ+1)υ3,(ϕ+1)υ4,
    (ϕ+1)υ5,(ϕ+1)υ6)
    ψ2=ψ+I.

    It follows that (R62,ψ) is a golden semi-Reimannian manifold.

    The tangent bundle Υ is spanned by

    Z0=sinα υ5cosα υ6ϕ υ2,
    Z1=ϕ sinα υ5ϕ cosα υ6+ υ2,
    Z2=υ5¯ϕ sinα υ2+υ1,
    Z3=¯ϕ cosα υ2+υ4+iυ6.

    Thus, is a 1-lightlike submanifold of R62 with RadΥ=Span{X0}. Using golden structure of R62, we obtain that X1=ψ(X0). Thus, ψ(RadΥ) is a distribution on . Hence, the is a CR-lightlike submanifold.

    In general relativity, particularly in the context of the black hole theory, lightlike geometry finds its uses. An investigation is made into the geometry of the golden semi-Riemannian manifolds that are CR-lightlike in nature. There are many intriguing findings on completely umbilical and completely geodesic CR-lightlike submanifolds that are examined. We present a required condition for a CR-lightlike submanifold to be completely geodesic. Moreover, it is demonstrated that the sectional curvature K of an entirely umbilical CR-lightlike submanifold of a golden semi-Riemannian manifold ¯ disappears.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The present work (manuscript number IU/R&D/2022-MCN0001708) received financial assistance from Integral University in Lucknow, India as a part of the seed money project IUL/IIRC/SMP/2021/010. All of the authors would like to express their gratitude to the university for this support. The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper. The present manuscript represents the corrected version of preprint 10.48550/arXiv.2210.10445. The revised version incorporates the identities of all those who have made contributions, taking into account their respective skills and understanding.

    Authors have no conflict of interests.



    [1] M. Blaszak, K. Marciniak, R-matrix approach to lattice integrable systems, J. Math. Phys., 35 (1994), 4661–4682. https://doi.org/10.1063/1.530807 doi: 10.1063/1.530807
    [2] D. J. Zhang, D. Y. Chen, The conservation laws of some discrete soliton systems, Chaos Soliton. Fract., 14 (2002), 573–579. https://doi.org/10.1016/S0960-0779(01)00238-7 doi: 10.1016/S0960-0779(01)00238-7
    [3] Y. T. Wu, X. G. Geng, A new integrable symplectic map associated with lattice soliton equations, J. Math. Phys., 37 (1996), 2338. https://doi.org/10.1063/1.531512 doi: 10.1063/1.531512
    [4] X. B. Hu, Z. N. Zhu, Some new results on the Blaszak-Marciniak lattice: Bäcklund transformation and nonlinear superposition formula, J. Math. Phys., 39 (1998), 4766. https://doi.org/10.1063/1.532535 doi: 10.1063/1.532535
    [5] X. B. Hu, H. W. Tam, Some new results on the Blaszak-Marciniak 3-field and 4-field lattices, Rep. Math. Phys., 46 (2000), 99–105. https://doi.org/10.1016/S0034-4877(01)80012-4 doi: 10.1016/S0034-4877(01)80012-4
    [6] D. J. Zhang, D. Y. Chen, Hamiltonian structure of discrete soliton systems, J. Phys. A, 35 (2002), 7225–7241. https://doi.org/10.1088/0305-4470/35/33/316 doi: 10.1088/0305-4470/35/33/316
    [7] R. Sahadevan, S. Khousalya, Master symmetries for Volterra equation, Belov-Chaltikian and Blaszak-Marciniak lattice equations, J. Math. Anal. Appl., 280 (2003), 241–251. https://doi.org/10.1016/S0022-247X(03)00032-5 doi: 10.1016/S0022-247X(03)00032-5
    [8] J. B. Zhang, J. Ji, Y. Q. Yao, From the conservation laws to the Hamiltonian structures of discrete soliton systems, Phys. Scr., 84 (2011), 015001. https://doi.org/10.1088/0031-8949/84/01/015001 doi: 10.1088/0031-8949/84/01/015001
    [9] X. Y. Wen, X. H. Meng, X. G. Xu, J. T. Wang, N-fold Darboux transformation and explicit solutions in terms of the determinant for the three-field Blaszak-Marciniak lattice, Appl. Math. Lett., 26 (2013), 1076–1081. https://doi.org/10.1016/j.aml.2013.06.004 doi: 10.1016/j.aml.2013.06.004
    [10] D. S. Wang, Q. Li, X. Y. Wen, L. Liu, Matrix spectral problems and integrability aspects of the Blaszak-Marciniak lattice equations, Rep. Math. Phys., 86 (2020), 325–353. https://doi.org/10.1016/S0034-4877(20)30087-2 doi: 10.1016/S0034-4877(20)30087-2
    [11] R. Hirota, The direct method in soliton theory, New York: Cambridge University Press, 2004.
    [12] W. X. Zhang, Y. Q. Liu, Solitary wave solutions and integrability for generalized nonlocal complex modified Korteweg-de Vries (cmKdV) equations, AIMS Math., 6 (2021), 11046–11075. https://doi.org/10.3934/math.2021641 doi: 10.3934/math.2021641
    [13] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge: Cambridge University Press, 1991.
    [14] J. Weiss, M. Tabor, G. Carnevale, The Painleve property for partial differential equations, J. Math. Phys., 24 (1983), 522–526. https://doi.org/10.1063/1.525721 doi: 10.1063/1.525721
    [15] Q. L. Zhao, M. A. Amin, X. Y. Li, Classical Darboux transformation and exact soliton solutions of a two-component complex short pulse equation, AIMS Math., 8 (2022), 8811–8828. https://doi.org/10.3934/math.2023442 doi: 10.3934/math.2023442
    [16] M. Wadati, Transformation theories for nonlinear discrete systems, Prog. Theor. Phys. Suppl., 59 (1976), 36–63. https://doi.org/10.1143/PTPS.59.36 doi: 10.1143/PTPS.59.36
    [17] Manjeet, R. K. Gupta, On nonclassical symmetries, Painlevé analysis and singular, periodic and solitary wave solutions of generalized Hirota-Satsuma coupled KdV system, Commun. Nonlinear Sci. Numer. Simulat., 115 (2022), 106710. https://doi.org/10.1016/j.cnsns.2022.106710 doi: 10.1016/j.cnsns.2022.106710
    [18] N. A. Kudryashov, A. Biswas, A. G. Borodina, Y. Yıldırım, H. M. Alshehri, Painlevé analysis and optical solitons for a concatenated model, Optik, 272 (2023), 170255. https://doi.org/10.1016/j.ijleo.2022.170255 doi: 10.1016/j.ijleo.2022.170255
    [19] X. Wang, Darboux transformation for two discrete soliton equations, Zhengzhou China: Zhengzhou University, 2012.
    [20] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Berlin: Springer, 1991.
    [21] X. Y. Wen, Y. Q. Yang, Z. Y. Yan, Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation, Phys. Rev. E, 92 (2015), 012917. https://doi.org/10.1103/PhysRevE.92.012917 doi: 10.1103/PhysRevE.92.012917
    [22] S. Dong, Z. Z. Lan, B. Gao, Y. J. Shen, Bäcklund transformation and multi-soliton solutions for the discrete Korteweg-de Vries equation, Appl. Math. Lett., 125 (2022), 107747. https://doi.org/10.1016/j.aml.2021.107747 doi: 10.1016/j.aml.2021.107747
    [23] X. P. Xin, Y. R. Xia, L. H. Zhang, H. Z. Liu, Bäcklund transformations, symmetry reductions and exact solutions of (2+1)-dimensional nonlocal DS equations, Appl. Math. Lett., 132 (2022), 108157. https://doi.org/10.1016/j.aml.2022.108157 doi: 10.1016/j.aml.2022.108157
    [24] X. Y. Wen, Z. Y. Yan, B. A. Malomed, Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: exact solutions and stability, Chaos, 26 (2016), 123110. http://doi.org/10.1063/1.4972111 doi: 10.1063/1.4972111
    [25] X. Y. Wen, Z. Y. Yan, Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz-Ladik equation, J. Math. Phys., 59 (2018), 073511. https://doi.org/10.1063/1.5048512 doi: 10.1063/1.5048512
    [26] X. K. Liu, X. Y. Wen, Z. Lin, Continuous limit and position adjustable rogue wave solutions for the semi-discrete complex coupled system associated with 4×4 Lax pair, Appl. Math. Lett., 133 (2022), 108279. https://doi.org/10.1016/j.aml.2022.108279 doi: 10.1016/j.aml.2022.108279
    [27] T. Zhang, X. Y. Wen, Continuous limit, higher-order rational solutions and relevant dynamical analysis for Belov-Chaltikian lattice equation with 3×3 Lax pair, Pramana J. Phys., 97 (2023), 31. https://doi.org/10.1007/s12043-022-02502-z doi: 10.1007/s12043-022-02502-z
    [28] P. Liu, M. Jia, S. Y. Lou, Lax pair and exact solutions of a discrete coupled system related to coupled KdV and coupled mKdV equations, Phys. Scr., 76 (2007), 674–679. https://doi.org/10.1088/0031-8949/76/6/015 doi: 10.1088/0031-8949/76/6/015
  • This article has been cited by:

    1. Bang-Yen Chen, Majid Ali Choudhary, Afshan Perween, A Comprehensive Review of Golden Riemannian Manifolds, 2024, 13, 2075-1680, 724, 10.3390/axioms13100724
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1308) PDF downloads(43) Cited by(1)

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog