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rational solutions and mixed exponential-rational solutions are presented, in particular, their limit state
analysis and singular trajectories are analyzed graphically. These results may be helpful to explain
some relevant physical phenomena.

Keywords: three-field Blaszak-Marciniak equation; continuous limit; discrete generalized
(m, 3N — m)-fold Darboux transformation; rational solutions; limit state analysis
Mathematics Subject Classification: 35Q51, 35Q35, 37K40

1. Introduction

In 1994, Blaszak and Marciniak have studied R-matrix forms of many integrable lattice system and
also have proposed some different forms of the Blaszak-Marciniak (BM) lattice equations, which have
enriching bi-Hamiltonian structures [1]. One of BM lattice equations has the following form [1]

Pnt = 4n-1"n—-1 — Y4nTn,
Ant = Tn+1 — I'n-1, (11)
Fpt = rn(pn - pn+l)’

where p, = p(n,t),q, = q(n,t),r, = r(n,t) stand for the potential functions with respect to space
variable n and time variable . Moreover, in Ref [1], the Lax pair of Eq (1.1) is given by

0 1 0

Xn+1 = JuXn = Pn—A qn 1 Xns (1.2)
Ty 0 0
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0 0 1
Xnt = LoXn = T 0 0 Xn» (1.3)
—qn-1"n-1 T'n-1 A— Pn

where A is a time-independent spectral parameter, y,, = (17, ¥n, ¥»)" is a basic solution of (1.2) and (1.3)
(T is transposing a vector or matrix). The compatibility condition J,, = (L,41) J, — J,L, of (1.2)
and (1.3) leads to Eq (1.1). In Ref [2], an infinite number of conservation laws of Eq (1.1) have been
presented through a systematic method. In Ref [3], the new integrable symplectic map and involutive
system of conserved integrals of Eq (1.1) have been obtained. In Ref [4], a method of constructing the
Hamiltonian structure of Eq (1.1) has been described from conservation laws. In Ref [5], some soliton
solutions, rational solutions and Bécklund transformations of Eq (1.1) have been obtained by using
the Hirota bilinear form. In Ref [6], the isospectral multi-Hamiltonian structure of Eq (1.1) has been
obtained. In Ref [7], the authors have developed a sequence of master symmetries and commutable
generalized symmetries for Eq (1.1). In Ref [8], the Hamiltonian structures and their relationship with
the conservation laws of Eq (1.1) have been studied. In Ref [9], the N-fold Darboux transformation
(DT) and explicit solutions for Eq (1.1) in terms of the determinant have been investigated. In Ref [10],
the authors have constructed the matrix Lax representations of all the three-field and four-field BM
lattice equations covering Eq (1.1).

Finding exact solutions of nonlinear equations is an important research subject [11-16]. Some
methods of finding the exact solutions have been proposed and developed such as the Hirota
transformation [5, 11, 12], Painlevé analysis [14, 17, 18], DT [9, 15, 19-21] and Bécklund
transformation [16, 22, 23]. In Refs [24, 25], one of the authors of this paper has proposed a
generalized (m, N — m)-fold DT, which is taken as a generalization of N-fold DT. This generalized DT
can not only give soliton solutions, but also can give some rational solutions and mixed interaction
solutions. This generalized method is first used to solve some nonlinear equations with 2x2 Lax pair,
and later has been successfully extended to nonlinear equations with 3x3 and 4x4 Lax pair [26,27].
However, there are specific difficulties that need to be overcome from 2x2 Lax pair to 3x3 Lax pair. It
should be emphasized that nonlinear equations with 3x3 Lax pair are more difficult to solve than 2x2
Lax pair, which is worthy of further research. However, as far as we know, there is still no relevant
research work about the continuous limit, the discrete discrete generalized (m,3N — m)-fold DT,
various rational solutions and mixed exponential-rational solutions of Eq (1.1). Therefore, in this
paper, we will extend the generalized DT method to make further research on Eq (1.1) with 3x3 Lax
pair.

This article is organized below. In Section 2, we convert Eq (1.1) into the new continuous equations
by using the continuous limit technique. In Section 3, based on the known Lax pair (1.2) and (1.3), we
will construct the discrete generalized DT of Eq (1.1). In Section 4, some rational solutions and mixed
exponential-rational solutions will be given by using the resulting generalized DT. Meanwhile, we will
use asymptotic analysis to study limit state analysis of rational solutions, and their singular trajectories
are shown graphically. Finally, a few conclusions are summarized.

2. Continuous equations related to Eq (1.1)

The continuous limit of discrete integrable equations is an essential research area [28]. Below
we will investigate some continuous equations related to discrete Eq (1.1) via the continuous limit
technique.

(i) If the limit conditions

pn=1—-pln+teet]+0E) =1 - plx,71)+ O(e),
gn=1—-—gqgl(n+1te,et]+0() =1 —q(x,7) + O(¢), 2.1
r, = —r[(n+ e, et] + O(e) = —r(x, 1) + O(e),
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and
1 1
Dn+1 = 1- P()C te, T) + 0(8) =1- (P + Px€ + prxgz + 8pxxx83) + 0(8)’
1 1
qn+1 = 1- (I(x te, T) + 0(8) =1- (q * q,& + EQxxgz + 6‘]xxx83) + 0(8), (22)
1
ol = —r(xxe,7)+0E)=—-(r+re+ Erms2 + grxxx.93) + O(e),

are used, Eq (1.1) is transformed into

(Pr+pxtre—qri—rq)e+ 0(82) =0,
(gr + qx — 2r)e + O(e?) = 0, (2.3)
(rT + rx_rpx)g‘l‘ 0(82) =0.

As we put 7 as ¢ and ignore O(¢?) of Eq (2.3), Eq (1.1) can actually converge to a new continuous
nonlinear equation.
(ii) When the limit conditions

pn = pln+t)e, et] + O(e) = p(x, 1) + O(e),
qn = ql(n + e, et] + O(e) = qg(x, 1) + O(¢), 2.4)
r, = r[(n + te, et] + O(e) = r(x,7) + O(e),

and
1 1
Dn+1 = P(x te, T) + 0(8) =p + Px€ + prxgz + 6pxxx83 + 0(8),
1 ] 3
Gne1 = q(x £ &,7)+ 0(€) = g £ q.& + 790" £ Qo + O(e), (2.5)
ol =r(x+xe,7)+0(E)=r+re+ Erxxg2 + grxxx83 + O(e),

are applied, Eq (1.1) is transformed into

(pT + px)"':z + 0(83) = O’
(gr +qx — 2ro)e’ + 0(e) = 0, (2.6)
(r; + ro)e? + 0 = 0.

When we ignore O(g*), Eq (1.1) can actually converge to a linear equation.
3. Discrete generalized DT method

In the section, we study the discrete generalized (m,3N — m)-fold DT of Eq (1.1). To this aim, we
consider the following gauge transformation

Xn = Wn)(n, 3.1
where W, is the 3x3 Darboux matrix. Based on the knowledge of the DT, ¥, needs to satisfy
)?n+1 = jn)?n = Wn+1Jan_l)~(n’ )?n,t = Z‘n)?n = (Wn,t + WnLn)Wn_l)?n’ (32)

where J,,, L, keep the consistent forms as J,,, L, except for replacing the old p,, g,, r, with the new p,,
dn, 7. In addition, in Ref [9], a certain Darboux matrix W, has been constructed as

Wy=| —FY 0+ Y DR Ay N B X pIpin oY , (3.3)
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where N is the positive integer, Aff'), BE,”, Cﬁ,j), D,(f), Eflj), F,(f), GE,j), Hf,") and K,ﬁj) are functions of
the variables n, ¢. In this work, we will continue to use Darboux matrix W, in (3.3) to give a new
generalized DT, which will be used to give new rational and mixed interaction solutions. By virtue of
the relationship between J,and J, in (3.2), we have

~ N-1 N-1 N-1 N-1 N-1
Pn=pa+ ANV —ENTV 4 (g, + BNV - T FND,

n+1

0= + B, - F (34)
n n n+l 2 :
(N-1) (N=1)
=-H ~+r+C._ ).

If we use m spectral parameters A to solve these 9N unknown functions, it is necessary to expand
Wn(/l + &)xn(A; + €), where € is an arbitrary very small parameter, y,(4; + €) = )(/1) + X(l)(/l,-)s +

XPWE + )P )E + - WA+ ) = WO + We + - + Ws% and z; satisﬁes AN=m+ X", z.
If we let W, (4; + )y, (4; + €) = 0, then we can obtain

W (s () =
W% e () + W“)u W () =
WP () + WP () + W% WY () =0,

W(J)(/l )X(Z: J)(/li) — 0

where
(N-1) N-1) (v-1) (N-1) (v-1) v-1)
a0 2 B vy BB vy S G T oy S AB T paven AR T vy _ A
! o Ay Ay Ay T A Ay
with Aj=det([AY, AP, ... AT, Ag=det([AY’, A, -+, AT'DT, AY = (AD Deipans AY =

(l) (l)

L 2Jh(1<]<zl+1 O<h<3N 0<z<m)areg1venas

(Az, j’h)(z,-+1)><3Na m Wthh A

Y Ch AN s 1< i<+ 1, 1<h<N,

APy = B Ol ANk 0 as 1< j<g+ 1, 1< h<2N,

Yy Chy ANk as 1<j<z+1,2N+1<h<3N,
Yiy Ok ANyt as 1<j<l+z, 1<h<N,

Ag)]h— ZJICIZ‘Nh/lzNhk)’,(Jnlk) as 1<j<l+z, N+1<h<2N,

L ~k 3N—h—k,, (j—1-k) 2h—-N-2 L~k 3N—h—k+1,,(j—1-k) :
S Chy BNk _cdeN=2 ek BNk g 1< j< 142, 2N+ 1< h <3N,

where AAle_l), AB,SN_I) and AC;N_]) are derived by replacing the first, (N + 1)th and (2N + 1)th
columns of A, with (a'V, a®, --- a(’"))T respectively, with a® (a Nes1x1s in which a(’) =
YT CRA IR AENYY and AF(YY are derived by substituting the (N + 1)th and 2N + 1)th
columns of A,, respectively, by (bV, b®, ... b!T with b = (b;i))(zi+1)xl, in which by) =
= S ChAN R (1 < <+ 1, 1+ N < h < 3N). AH""" is derived by replacing the first
column to Ay by (@, d?, .-, d™" with d? = (@)1, in which df =

—(1+ YD) I ok vk 1)

The expression (3.4) with m spectral parameters are referred to as the generalized (m, 3N — m)-fold
DT, where m stands for the number of the used spectral parameters, N denotes the order of DT, and 3N —
m is the total order number of Taylor expansion of y, used. It should be noted that when m = 3N and
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z; = 0, the generalized (m,3N — m)-fold DT becomes the (3N, 0)-fold DT, which includes the usual
3N-fold DT in Ref [9]. If the Taylor expansion is not used, the (3N, 0)-fold DT is just the usual 3N-fold
DT, which only can give soliton solutions. If we use the Taylor expansion in the (3N, 0)-fold DT, we
can give some rational solutions and mixed solutions. When 1 < m < 3N, we can derive more kinds
of exact solutions. In the next section, we will discuss the special cases of this method.

4. Exact rational solutions and mixed exponential-rational solutions

By inserting the initial solutions p, = %, g, =1, r, = 21—7 of Eq (1.1) into Lax pair (1.2) and (1.3),
we can give a basic solution with 4 = A; as

L+ L4 L _5
T CriTe1 7 4 Cpotie™ @ 4 Cparie s
L 45 L1 JI S
X Yo | = Ck’lTn+1eZ7Tl (&) +Cy. ,l.n+lez7T2 (&) +Ck,3ng+lez7r3 (e) , 4.1)
) 1
Un LCp e 4 ] C RIS NN

where 6(g) = (36 — 364 + 12\/1243 272 + 18/lk—3)lZ3N_lm-s3j m;i(j=0,1,---,3N - 1),

Ci1» Cra, Cys are arbitrary constants, while 7|, 7, and 73 satisfy 7° — 72 + (4 — —)T - ﬁ =0
respectively. Below, two kinds of Taylor series expansions of y, at 4 = A4y = 1 are dlsplayed and

other A; do not make Taylor series expansion.

e Type . When C;; =0, C, = -C;3 = ﬁ, where / is an imaginary unit, the first three coefficients of
the y, expansion are given by

(0) 95
Xy = %(10) = —Led3" e | 3¢ +27
o £-9
1 n(i) i n(i)
X =y | P =]
(0 ?2)
in which
n = mm ntg [g“ 1883 +27&% + 270 + 24312 + (54&% — 810¢ + 2430)1],
P = 174%e93 ntg [§4 + 1883 + 272 — 702¢ — 1944 + 24312 + (542 + 162¢ — 486)1],
W= 52488e93 ME[EY — 5483 + 999¢% — T506& + 19440 + 24312 + (54£2 — 1782¢ + 14094)1],

17 = — s € 376 [€7 — 6360 + 94585 + 6615¢* — 180306¢° +285768£ + 2566080¢ + (765456~

1377810)8 + (85053 — 3827252 + 5051970& — 18921924)1 + (189&5 — 11340&* + 21262563~

123492652 6735966 + 11547360)1],
Y& = L 53+ [T — 7565 — 1890&* + 134379&° + 561330£% — 4414824¢ — 14696640+

297606960

(76545¢ — 688905)13 + (8505&3 — 1530902 + 229635¢ + 1745226)1 + (189&5 — 28354~
4252553 +3725198" + 1898316¢ - 278186411,

2 _ n 3
D = — ol e8 3 €7 — 12680 + 60485 — 137970&* + 1495179¢° — 5960304£> — 8640108¢+

80831520+ (76545£—2066715)F + (8505 — 612360 + 140077356 —101590524)1> +(189£° —
19845¢* + 773955&% — 13864851£% + 112490532¢ — 322984908)1],

where & = 9n — t, other X(]) (j=3,4,5---) are not displayed here.
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e Typell.If C,; =1, C,, = Cy3 = 0, the first three coeflicients of the y, expansion are given by

) 9
Xglo) — 7510) — eé 3—11—2 3 ,
) 1

7y & — 98 + 324moé + 27¢t — 162t
XD = A = —Les3 | 18 + 662 + 108mog + 974my + 27¢ + 9ét + 271 ,
(1) 183 — 482 4 36mo¢ — 324m + 45¢ — 162 + 3¢1 — 451
i e
W= 4
)
in which

1Y) = absse937[€0 — 4565 + 1620mof* +405¢* — 29160mo&> + 36458 + 524880m2¢2 + 43740m &
~39366£2 — 1574640m2& +787320moé + 18895680m; + 1093513 + (36452 +393660m, — 984 15¢
+590490)22 + (135* +87480m0&> — 5670&3 +4723920m2 — 1312200m0é + 69255 +3936600m,
—236196)1],

Y = o= ed37E0 + 98° — 40584 + 1620moE* + 29160moe> — 36458 + 26244£ + 524880m2¢>
+7873200m2é + 43740mo¢? — 787320moé +236196¢ + 18895680m3 +28343520m3 + 1093513 (
+3645&% + 393660mg — 328056)1> + (135¢* + 87480moe> — 810&3 + 4723920m + 262440moé
—18225£% — 787320my + 26244 + 236196)1],

P = ezt 37E0 — 99 + 1620moE* + 36456 — 87480moe> — 61965& + 524880m2¢>
~11022480m2¢ + 1618380m0¢ — 11809800m0¢ + 4855142 + 28343520m, — 1417176¢
+18895680m; +56687040m2 + 1093513 +(3645¢2 +393660m, — 164025¢ +1771470)8 +(135¢*

+87480mo&* — 10530&° + 4723920mg — 2886840moé + 2879552 + 22832280m, — 3254256
+12754584)t], .
where &€ = 9n — 1, and other y\(j > 2) are omitted.
In the following, we will obtain various rational solutions of Eq (1.1) by applying generalized DT
only when N = 1. It should be noted here that the definition of order number of rational solutions is
based on the used highest order number of Taylor expansion.

4.1. Exact first-order rational and mixed exponential-rational solutions

As m = 3, we need to use two spectral parameters. Specifically, we choose Type I in (4.1) for
A =1, 4 = % corresponds to the coefficients C,; = 1, C;, = C,3 = 0, while choosing C3, =

1, Cs1 =C53=0for A3 = %, then we can give the simplest rational solutions of Eq (1.1) as

~ 2 36 N 216 . 1 12
pn =3 s Qn = l + s Th = 7= — s
(2F + 3)(2¢ - 33) 27 2¢-15)

_ (4.2)
3 (26— 15)(2¢ - 33)

whose numerator and denominator are quadratic polynomials. We call (4.2) the first-order rational
solutions because we only use the first coefficient of the Taylor expansion.
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Noted that p, owns two singular lines:
26 -15=0, 26 -33=0,
d» owns two singular lines:
26 +3=0, 26 -33=0,
7, owns one singular line:
26 -15=0.
To easier understand (4.2), their structure plots are displayed in Figure 1.

4 4 4
i s —
i R sl el
-4 2 4 - | I W -4 2 4
=3 t -2 { -2 t
-4 -4 -4

Figure 1. First-order rational solutions (4.2): (al)—(a3) Contour plots of p,, ¢, and 7,
respectively; (b1)—(b3) Singular trajectories of p,, ¢, and 7, corresponding to (al)—(a3),
respectively.

When the coefficients Cyj, Cy2, Ci3 corresponding to A, and A3 are not all zeroes, the mixed
exponential-rational solutions of Eq (1.1) can be given as

.2 0 0 0 0 0 = 0 0 - _ 1 o , 1 o
Pn=73 +AY -ED +(1+BY-F)O)FY, §,=1+BY -F), = > -H” + ﬁcnﬂ, (4.3)
© _ MY 0 _ ABY ) _ ACY o) _ AEY ) _ AR 0) _ AHD
Whef_‘?}" =% B =g G = 5 By = 5 B = B = 1
1mn wnic
I I I LR T
AAY = | =010 Ya(A2) Wa(A2) | ABY = | (1) —Aama() ¥a(A2) |,
—0/1377;1(/132) Yn(A3) lﬁ(;z(/h) Un(/ls)o —/1377n(/1(3)) lﬁn(/lg)
. oYY =y Y O —
AFD = | 1,(0) ¥u() =Aaya(d2) |, A2 = | (D) YulA2) ¥a(d2) = Aama(A2) |,
nn(/l,’)) Yn(/l3) _/137n(/l3) 7711(/13) 7n(/l3) lpn(/l3)_/1377n(/13)
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©)

o Y W Moo, ~e), Yoy — iy
Ar = 7)) Ya(d) ¥ |, AEY = | s1() =2y () Wi (A2) = At (A2) |,
M(A3)  Yn(43) Yn(A3) Mns1(A3) = B3Y41(A3)  Ypi1(A3) — A31141(A3)
775331 7’5331 _/11775331 7751(1)1 —(I+ Cﬁ)l)ﬂl‘ﬁgl w;(wr)l
ACO = i () Yus1(A2) = amesi () |, AHY, = | 0i1(d2) =1+ CO D)ot (2) i ()
M1 (3) Va1 () =311 (A3) Me1(A3) =1+ CONA1(A3) Y1 (A3)

Here we only list the determinant expressions of the mixed exponential-rational solutions of Eq (1.1)
and do not discuss their structures.

4.2. Exact second-order rational and mixed exponential-rational solutions
As m = 2, we need to use two spectral parameters. Here we discuss two cases:
Case 1. We just use the above second type expansion Type II of (4.1) for 4; = 1, and we choose

A = i, whose corresponding coeflicients are C,; = 1, C, = Cy3 = 0, then the second-order rational
solutions of Eq (1.1) can be given as

o2 O(=2£ + 48¢ + 181 + 216mg — 333)
P T @ 2248 7 91+ 108mg + 81)(&% — 6¢ + 97 + 108mg — 54)°
; 108(£2 + 3¢ — 9t — 108y — 36) )

=1
T @+ 126+ 91 + 108mg — 27)(&2 — 24 + 97 + 108my + 81)’
1 3(=2&% + 12¢ + 18 + 216my — 63)

M T T @ = 6E+ 9 + 108my — 54)

Whose numerator and denominator are the fourth-order polynomials. We call (4.4) the second-order
rational solutions owing to m = 2. Noted that p, has the four singular curves:

E—12-3VT—12myg—1=0,6—12+3VT= 2my—1=0,
E-3-3VT—12mg—1=0,E-3+3VT—12my—1=0,

g, has the four singular curves:

E+6-3VTI—12mg—1=0,+6+3VT—12my—1=0,
E—12-3VT—12my—1=0,6— 12+ 37— 12my—1=0,

7, owns the two singular curves:

E-3-3VT—12my—1=0, £E-=3+3VT—12my—1=0.

The structure plots of solution (4.4) are displayed in Figures 2 and 3. In solution (4.4), my is
an arbitrary parameter to control the position of the singular curves, which means that the rational
solutions can be moved to the position we need by changing m,. Figure 2 shows the structures with
my = 0, while Figure 3 shows the structures after translation position with my = 2.

AIMS Mathematics Volume 8, Issue 7, 15553—-15568.
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t
(b3)

Figure 2. Second-order rational solutions (4.4): (al)—(a3) Contour plots of p,, ¢, and 7,

with my = 0, respectively; (b1)—(b3) Singular trajectory plots of p,, ¢, and 7, with my = 0,
respectively.

t

(1Y)

-50 - 0

-10

Figure 3. Position translational second-order rational solutions (4.4): (al)—(a3) Contour

plots of p,, ¢, and 7, with my = 2, respectively; (b1)—(b3) Singular trajectory plots of p,,, g,
and 7, with m( = 2, respectively.

It should be noted that if at least two of C,;, C,,, C,3 are not zeroes corresponding to the spectral
parameter A, = %, we can obtain the mixed exponential-rational solutions of Eq (1.1) as

P = 2L A9 ZEO L +BY - FOOVFO, g, =1+BY -F9,, 7, = L go Lo
n n n n+ n » Yn n n

3 n+l n+1’ 27 n+1 27 n+1’ (45)

AIMS Mathematics Volume 8, Issue 7, 15553—-15568.
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Where () (0) (0)
©) _ MY p0) _ ABY 0 _ ACY (0) _ AES 0) _ AFY  p0) _ AH
. ) A, = A ° B, = A Cn+l = A]+ ’ En+l = A; = Ay, > Hpel — A1+ )
in which
0 0 0 0 0 0
~Ainy) wooow i ~n) vy
MO = | 4 @ D D ABO = | 40 gD - @ 0)
n n n n 2 n n n n
—m(2)  Ya(l2) Yu(d2) M(2)  —n.(l2)  Yau(d2)
0 0 0 0 0 0 0
oy ~y oy w — )
AFSzO) — 7](1) ,y(l) —/ll’}’(]) _ ,y(O) A2 — 77(1) ,y(l) l//(l) _ /lln(l) _ )7(0)
n n n n 2 n n n n n
Ma(A2)  yu(d2)  —A2ya(d2) Ma(A2)  Yu(d2)  ¥n(A2) — A2mu(A2)
0 0 0 0 0 0 0
A TR o —hyh Uty = iy
_ (1) (1 (1 ) _ (1) (1) 0) (1 (1 ©)
Al - Tn Vn l//" ’ AEn+1 - nn+1 _/llyn+1 - yn+1 l//nJrl - /llnn+1 - nn+1
Mu(A2)  vu(d2)  Yu(A2) Ms1(d2) = ypr1(d2)  Ype(A2) = A2nfpy1 (A2)
) (0) (0) 0) (0) 0) )
() 77nl+)1 y?lJSl _ilnnﬂ © ) 77?1+)1 0_)(1 " flnﬂ)/llwnﬂ 0) y,,(0) ¢n1+)1
_ ( ) ) _ ( ) ( (
ACn+1 - Mht1 Yisl _/1177,”1 Ty |0 AI—In+l - M1 -(I+ Cn+1)/11¢n+1 -+ Cn+1)¢n+1 wn+1
M1 (2) Yar1() = onusi (L2) Mne1(A2) ~(1+ COD o1 (1) Yn1(A2)

Here we list the determinant expressions of these mixed solutions, and draw their structure plots as
shown in Figure 4.

I P ] 0 1 |
-50 ~?;0 -10 10 -50 -30 -10 10 -50 -30 -10 10
i t

Figure 4. Mixed exponential-rational solutions (4.5): (a)—(c) Contour plots of p,, §, and 7,
respectively.

Case 2. If we use the above first type expansion Type I of (4.1) for 4;, and we choose 1, = }‘ with the
coefficients C,; = 1, C;, = C,3 = 0, we can get the new second-order rational solutions of Eq (1.1) as

i 18M, 108M, 1 6M,
pn:z_ ,Qn: + s = =5 — ) (46)
37 MM, MM, 27 M ‘

where
M, =285 — 108€° + 1899¢* — 1107083 — 3078&% + 14581 + (810£2 — 8748¢ + 10935)1% + (18&*
—432£% — 2592£2 4+ 39366¢ — 56133)t + 194643¢ — 459270,
My = & — 128 — 126&% + 243¢ — 8112 + (18£2 — 81)t + 1458,
My = & — 4883 + 684&% — 3321& — 8112 + (18&2 — 324¢ + 1377)t + 4374,
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My = 265 — 188% — 504£* + 72363 — 9639¢% — 217242¢ + 14581 + (810&% — 4374¢ — 21870)¢
+(18& — 756£% + 1782£* + 48114¢ + 48843)t + 196830,

Ms = £ — 488% + 684£% — 3321¢& — 8112 + (18£% — 324¢ + 1377)t + 4374,

Mg = £+ 248% + 366% — 2025¢ — 8112 + (18£% + 324¢ + 1377)t — 8748,

My = 2£° — 36£% — 153&* + 5454&% — 745267 — 120285¢ + 14587 + (810£% — 2916¢ — 15309)7>
+(18& — 432£% — 2592£% + 18954¢ + 35721)t + 249318,

Mg = £ — 126% — 126£% + 243¢ — 8112 + (18£% — 81)t + 1458.

Below we use asymptotic analysis technique to analyze the limit states of solutions (4.6), we define

a; =&E-34/( V2 - Dt, (1> 0), @y = E-34/( V2 + 1)(—1), (t < 0), then we can work out the asymptotic

states of solutions (4.6) when t — oo.

When & = a; +34/(V2 = 1)t, t > +co:

ﬁnﬁg_ 18 ’
3 202 -30a; +6V2a; +81-45V2
108
Gn = 1+ ; 4.7
202 — 12a; + 6 V2a; — 135 - 182 7
Fp— —= — 0 .
27 202 - 12a; + 6 V2a; +27 - 18V2
When & = a3 + 3J(V2 + 1)(=1), t = —c0:
2 18
Pn— 35— >
3 2a2-6V2a, - 30a; +45V2 + 81
108
dn— 1+ : 4.8
202 - 6 V2, — 120, + 18 V2 — 135 ()
6

== -

6 202 -6V2a, — 120, + 18 V2 +27

Noted that p, has four singularities:
200 -24+3V2=0,2a, -6 +3V2=0, 20, +24 +3V2 =0, -2a, + 6 +3V2 = 0,
d» has singularities at four curves:
200+ 12+3V2=0,20, =24 +3V2=0, -2, - 12+3V2 =0, —2a, + 24 + 32 = 0,
7, possesses singularities at two curves:
2a; - 6+3V2=0, 22, + 6+ 3V2 = 0.
Next, we plot these singular curves and compare them with contour plots of solutions (4.6). Near
t = 0, the interaction structures of solutions (4.6) are relatively complicated, and we only consider the
relatively large range of 7 (i.e., n> +*> >25). Figure 5(al)—(a3) show the contour plots of solutions (4.6),
Figure 5(b1)—(b3) display the singular trajectories. By comparing them, we find that these singular
trajectories are completely consistent with the exact solutions, which also shows the accuracy of our
asymptotic analysis.
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Figure 5. Second-order rational solutions (4.6): (al)—(a3) Contour plots of p,, ¢, and
7y, respectively; (b1)—(b3) Singular trajectory plots of the limit states of p,, ¢, and 7,

respectively.

4.3. Exact third-order rational solutions

When m = 1, we just utilize one spectral parameter A; with Type II expansion, then we can obtain
the third-order rational solutions of Eq (1.1) as

L 2
Dn = 5 +A££O) - Efg-)l

which can be simplified as

2

pn:g_

with

+(1+BY

D, 4= 1+ B O
54N, 324N,
> dn= 1 + s n =
N,N3 N5Ng

n+1°

27

1

1 o 1 0
r”_ﬁ_Hn+l+ECn+l’ 4.9)
G 410

Ny = &0 —258% — 15068 + 6390&7 — 3807£0 — 4556258 + 656100£* + 82668608 + 8503056£% — 4920751 + (—273375¢£2
—820125&)t* + (—12150£* — 72900&3 — 4483350&2 + 8135640¢ + 59442660)13 + (810£° — 8910&° — 230850£*
—386370&3 + 481140&% + 73614420 + 46294416)1> + (4568 — 900&7 + 4590£° — 26892&° — 380295¢* + 2332800¢°

+22438620&2 + 54797472é)t,

Na = €0 — 3365 + 315¢% — 67563 — 29162 + 8748¢ + 364513 + (4052 — 6075¢ + 58320)7% + (45&* — 810&3 + 4052

+26244¢ + 8748)t,

N3 = &0 + 218 +456% — 148583 — 10206&% — 17496¢ + 364513 + (40582 + 1215& + 36450)1> + (45¢* + 810&% + 405¢%

—32076¢ — 17496)t,
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Ny = &0+ 506° + 57068 — 5760£7 — 115587£° + 704708 + 6502680£* + 7610760&% — 11431886442 — 170061120&
—492075¢ + (=273375&> — 2296350¢ — 17714700)t* + (=12150&* + 145800£° — 2515050&% — 50913360¢
—198010980)7> + (810£° + 469808 + 279450&* — 26827203 — 48070260&2 — 244069200¢ — 605606544)1>
+(458 + 1800&7 + 19170£° + 1237688 — 15795£% — 177001203 — 122428260£% — 153055008¢ — 170061120)z,

Ns = &9 — 338 + 3156% — 67583 — 29167 + 8748 + 364583 + (4052 — 6075¢ + 58320)1> + (45¢* — 810&3 + 405&2
+26244¢ + 8748)t,

Ng = &0 + 758 + 2205¢* + 3172583 + 223074 + 612360& + 36458 + (4052 + 8505¢ + 80190)7> + (45&* + 24308
+441458% + 303264¢ + 612360)1,

Ny = —18&10 — 630£7 — 3780 + 793807 + 8266860 — 22088708 — 34904520£* — 7085880¢° + 18706723242
+88573507 + (4920750£ + 50191650¢ + 212576400)¢* + (218700£* + 1312200£ + 807003002 + 774722880¢
+1395918360)7> + (—14580£° — 539460&° — 1093500&* + 62067060&> + 6479643602 + 2047819320
+187067232)1% + (—810&% — 22680&7 — 1992600 — 740664&° + 99945904+ + 1768845603
+644815080&% + 37413446486)1,

Ng = &0 + 2185 + 454 — 148583 — 10206&% — 17496¢ + 36458 + (405&% + 1215 + 36450)1% + (45&* + 8103
+405£2 — 32076¢ — 17496)1.

In the same way, we also investigate limit state of solutions (4.10). Let
B = & - \/[3(80+30 \/6)% +—3%  +15](-1), (t < 0), as t — —oo, the limit states of
(80+30V6)3
solutions (4.10) are given as below:
= 2 3600 _ _>1+21600 —— 1 1200 A1
n [ n S} r}’l A T .
=3 wow, 4 Wi W3 27 W2 @10

with

W, = 3 V6(80 + 30 V6)F — 8(80 + 30 V6)3 — 10(80 + 30 V6): + 208 — 110,

W> = 3V6(80 + 30 V6)3 — 8(80 + 30 V6)3 — 10(80 + 30 V6)3 + 208 + 70,

W5 = 3V6(80 + 30 V6)3 — 8(80 + 30 V6)3 — 10(80 + 30 V6)3 + 208 + 250.

From the asymptotic expressions (4.11), we can find that p,, owns two singular curves:

3v6(80 + 30 V6)3 — 8(80 + 30 V6)3 — 10(80 + 30 V6)3 + 208 — 110 = 0 and 3 V6(80 + 30 V6)7 —
8(80 + 30 V6)3 — 10(80 + 30 V6)3 + 208 + 70 = 0.

g, owns two singular curves:

3v6(80 + 30 V6)3 — 8(80 + 30 V6)3 — 10(80 + 30 V6)3 + 208 — 110 = 0 and 3 V6(80 + 30 V6)7 —
8(80 + 30 V6)3 — 10(80 + 30 V6)3 + 208 + 250 = 0.

7, has one singular curves:
3v6(80 + 30 V6)3 — 8(80 + 30 V6)3 — 10(80 + 30 V6)3 + 208 + 70 = 0.

We observe that the solutions (4.10) tend to their backgrounds as  — +oco respectively, so we will
only consider ¢t < O here. Figure 6 shows the contour plots and singular trajectory plots outside the
scope of n? + 1> =25, from which we can clearly see that the singular trajectories are completely
consistent with exact solutions, which also demonstrates the accuracy of our asymptotic analysis
results.
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Figure 6. Third-order rational solutions (4.10): (al)—(a3) Contour plots of p,, ¢, and
7y, respectively; (b1)—(b3) Singular trajectory plots of the limit states of p,, ¢, and 7,
respectively.

5. Conclusions

In this article, the discrete three-field BM lattice Eq (1.1) has been further studied. Some new
achievements have been obtained: (i) BM lattice Eq (1.1) has been mapped to the new continuous
Eqgs (2.3) and (2.6) under the continuous limit; (ii) The generalized (m,3N — m)-fold DT including
the previous N-fold DT in Ref [9] has been constructed for Eq (1.1), and the generalized DT can
not only give soliton solutions, but also can give rational and mixed exponential-rational solutions.
(111) By applying the resulting generalized DT, some rational solutions and mixed exponential-rational
solutions have been exactly obtained, and the structure plots and limit state analysis of rational solutions
are investigated graphically (see Figures 1-6). These new findings might be useful in understanding
some physical phenomena.
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