Research article

On lightlike geometry of indefinite Sasakian statistical manifolds

  • Received: 22 June 2021 Accepted: 07 September 2021 Published: 08 September 2021
  • MSC : 53C15, 53C25, 53C40

  • In the present study, the concept of Sasakian statistical manifold has been generalized to indefinite Sasakian statistical manifolds. We also introduce lightlike hypersurfaces of an indefinite Sasakian statistical manifold and establish relations between induced geometrical objects with respect to dual connections. Finally, invariant lightlike submanifold of indefinite Sasakian statistical manifold is proved to be an indefinite Sasakian statistical manifold.

    Citation: Oğuzhan Bahadır. On lightlike geometry of indefinite Sasakian statistical manifolds[J]. AIMS Mathematics, 2021, 6(11): 12845-12862. doi: 10.3934/math.2021741

    Related Papers:

  • In the present study, the concept of Sasakian statistical manifold has been generalized to indefinite Sasakian statistical manifolds. We also introduce lightlike hypersurfaces of an indefinite Sasakian statistical manifold and establish relations between induced geometrical objects with respect to dual connections. Finally, invariant lightlike submanifold of indefinite Sasakian statistical manifold is proved to be an indefinite Sasakian statistical manifold.



    加载中


    [1] S. Amari, Differential geometry of curved exponential families-curvature and information loss, Ann. Statist., 10 (1982), 357–385.
    [2] S. Amari, Differential-geometrical methods in statistics, In: Lecture notes in statistics, Vol. 28, New York: Springer, 1985.
    [3] S. Amari, H. Nagaoka, Methods of information geometry, Vol. 191, Oxford, U.K.: AMS/Oxford University Press, 2000.
    [4] C. Atindogbe, J. P. Ezin, J. Tossa, Lightlike Einstein hypersurfaces in Lorentzian manifolds with constant curvature, Kodai Math. J., 29 (2006), 58–71.
    [5] M. E. Aydin, A. Mihai, I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat, 29 (2015), 465–476. doi: 10.2298/FIL1503465A
    [6] O. Bahadir, M. M. Tripathi, Geometry of lightlike hypersurfaces of a statistical manifold, 2019. Available from: https://arXiv.org/abs/1901.09251.
    [7] B. Bartlett, A "generative" model for computing electromagnetic field solutions, 2018. Available from: http://cs229.stanford.edu/proj2018/report/233.pdf.
    [8] J. K. Beem, P. E. Ehrlich, K. L. Easley, Global Lorentzian geometry, 2Eds., New York: CRC Press, 1996.
    [9] O. Calin, C. Udriste, Geometric modeling in probability and statistics, Springer, 2014.
    [10] K. L. Duggal, Foliations of lightlike hypersurfaces and their physical interpretation, Open Math., 10 (2012), 1789–1800.
    [11] K. L. Duggal, A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Dordrecht: Kluwer Academic Publishers Group, 1996.
    [12] K. L. Duggal, D. H. Jin, Null curves and hypersurfaces of semi-Riemannian manifolds, Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2007.
    [13] K. L. Duggal, B. Sahin, Differential geometry of lightlike submanifolds, Basel: Birkhauser Verlag, 2010.
    [14] B. Efron, Defining the curvature of a statistical problem (with applications to second order efficiency), Ann. Statist., 3 (1975), 1189–1242.
    [15] H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl., 27 (2009), 420–429. doi: 10.1016/j.difgeo.2008.10.019
    [16] H. Furuhata, Statistical hypersurfaces in the space of Hessian curvature zero, Differ. Geom. Appl., 29 (2011), S86–S90. doi: 10.1016/j.difgeo.2011.04.012
    [17] H. Furuhata, I. Hasegawa, Submanifold theory in holomorphic statistical manifolds, Geometry of Cauchy-Riemann submanifolds, Singapore: Springer, 2016,179–215.
    [18] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys., 117 (2017), 179–186. doi: 10.1016/j.geomphys.2017.03.010
    [19] J. V. D. Gucht, J. Davelaar, L. Hendriks, O. Porth, H. Olivares, Y. Mizuno, et al., Deep Horizon: A machine learning network that recovers accreting black hole parameters, Astronomy Astrophysics, 636 (2020), 1–12.
    [20] V. Jain, A. P. Singh, R. Kumar, On the geometry of lightlike submanifolds of indefinite statistical manifolds, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050099. doi: 10.1142/S0219887820500991
    [21] A. Kazan, Conformally-projectively flat trans-Sasakian statistical manifolds, Phys. A, 535 (2019), 122441. doi: 10.1016/j.physa.2019.122441
    [22] E. Kilic, O. Bahadir, Lightlike hypersurfaces of a semi-Riemannian product manifold and quarter-symmetric nonmetric connections, Int. J. Math. Math. Sci., 2012 (2012), 178390.
    [23] T. Kurose, Conformal-projective geometry of statistical manifolds, Interdiscip. Inform. Sci., 8 (2002), 89–100.
    [24] İ. Erken, C. Murathan, A. Yazla, Almost cosympletic statistical manifolds, Quaest. Math., 43 (2020), 265–282. doi: 10.2989/16073606.2019.1576069
    [25] F. Massamba, Lightlike hypersurfaces of indefinite Sasakian manifolds with parallel symmetric bilinear forms, Differ. Geom. Dyn. Syst., 10 (2008), 226–234.
    [26] F. Massamba, Killing and geodesic lightlike hypersurfaces of indefinite Sasakian manifolds, Turkish J. Math., 32 (2008), 325–347.
    [27] S. Ssekajja, Some remarks on invariant lightlike submanifolds of indefinite Sasakian manifold, Arab J. Math. Sci., 2021. DOI: 10.1108/AJMS-10-2020-0097.
    [28] K. Takano, Statistical manifolds with almost contact structures and its statistical submersions, J. Geom., 85 (2006), 171–187. doi: 10.1007/s00022-006-0052-2
    [29] A. D. Vilcu, G. E. Vilcu, Statistical manifolds with almost quaternionic structures and quaternionic Kahler-like statistical submersions, Entropy, 17 (2015), 6213–6228. doi: 10.3390/e17096213
    [30] P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann. Inst. Statist. Math., 41 (1989), 429–450. doi: 10.1007/BF00050660
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1994) PDF downloads(142) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog