Research article Special Issues

Existence results of nonlinear generalized proportional fractional differential inclusions via the diagonalization technique

  • Received: 25 July 2021 Accepted: 27 August 2021 Published: 07 September 2021
  • MSC : 34A08, 34A12, 34A38

  • The present paper is concerned with the existence of solutions of a new class of nonlinear generalized proportional fractional differential inclusions with the right-hand side contains a Carathèodory-type multi-valued nonlinearity on infinite intervals. The investigation of the proposed inclusion problem relies on the multi-valued form of Leray-Schauder nonlinear alternative incorporated with the diagonalization technique. By specializing the parameters involved in the problem at hand, an illustrated example is proposed.

    Citation: Mohamed I. Abbas, Snezhana Hristova. Existence results of nonlinear generalized proportional fractional differential inclusions via the diagonalization technique[J]. AIMS Mathematics, 2021, 6(11): 12832-12844. doi: 10.3934/math.2021740

    Related Papers:

  • The present paper is concerned with the existence of solutions of a new class of nonlinear generalized proportional fractional differential inclusions with the right-hand side contains a Carathèodory-type multi-valued nonlinearity on infinite intervals. The investigation of the proposed inclusion problem relies on the multi-valued form of Leray-Schauder nonlinear alternative incorporated with the diagonalization technique. By specializing the parameters involved in the problem at hand, an illustrated example is proposed.



    加载中


    [1] R. P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, Boundary value problem for differential equations involving Riemann-Liouville fractional derivative on the half line, A Math. Anal, 18 (2011), 235–244.
    [2] B. Ahmad, A. Alsaedi, S. K. Ntouyas, H. H. Al-Sulami, On neutral functional differential inclusions involving Hadamard fractional derivatives, Mathematics, 7 (2019), 1084. doi: 10.3390/math7111084
    [3] J. Alzabut, T. Abdeljawad, F. Jarad, W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 1 (2019), 1–12.
    [4] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, Singapore: World Scientific, 2012.
    [5] M. Benchohra, J. R. Graef, N. Guerraiche, S. Hamani, Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line, AIMS Mathematics, 6 (2021), 6278–6292. doi: 10.3934/math.2021368
    [6] K. Deimling, Multivalued differential equations, Berlin-New York: Walter De Gruyter, 1992.
    [7] A. Fernandez, C. Ustaoğlu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math., 336 (2020), 112400.
    [8] A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer-Verlag, 2005.
    [9] S. Hristova, M. I. Abbas, Explicit solutions of initial value problems for fractional generalized proportional differential equations with and without impulses, Symmetry, 13 (2021), 996. doi: 10.3390/sym13060996
    [10] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [11] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn-s., 13 (2020), 709–722.
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [13] Z. Laadjal, T. Abdeljawad, F. Jarad, On existence-uniqueness results for proportional fractional differential equations and incomplete gamma functions, Adv. Difference Equ., 1 (2020), 1–16.
    [14] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781–786.
    [15] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, London: Imperial College Press, 2010.
    [16] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley-Interscience, 1993.
    [17] N. Nyamoradi, D. Baleanu, R. Agarwal, On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval, Adv. Math. Phys., 2013 (2013), 823961.
    [18] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [19] A. Salem, F. Alzahrani, A. Al-Dosari, Attainability to solve fractional differential inclusion on the half Line at resonance, Complexity, 2020 (2020), 960910.
    [20] S. Samko, A. Kilbas, O. Marichev, Fractional integrals and drivatives: Theory and applications, Gordon and Breach, 1993.
    [21] H. M. Srivastava, K. M. Saad, Some new models of the time-fractional gas dynamics equation, Adv. Math. Models Appl., 3 (2018), 5–17.
    [22] J. Wang, A. G. Ibrahim, D. O'Regan, Y. Zhou, A general class of noninstantaneous impulsive fractional differential inclusions in Banach spaces, Adv. Differ. Equ., 2017 (2017), 287.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2011) PDF downloads(131) Cited by(4)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog