Research article Special Issues

Certain subclass of analytic functions with respect to symmetric points associated with conic region

  • Received: 04 June 2021 Accepted: 30 August 2021 Published: 09 September 2021
  • MSC : 30C45, 30C80

  • The purpose of this paper is to introduce and study a new subclass of analytic functions with respect to symmetric points associated to a conic region impacted by Janowski functions. Also, the study has been extended to quantum calculus by replacing the ordinary derivative with a $ q $-derivative in the defined function class. Interesting results such as initial coefficients of inverse functions and Fekete-Szegö inequalities are obtained for the defined function classes. Several applications, known or new of the main results are also presented.

    Citation: Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy. Certain subclass of analytic functions with respect to symmetric points associated with conic region[J]. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742

    Related Papers:

  • The purpose of this paper is to introduce and study a new subclass of analytic functions with respect to symmetric points associated to a conic region impacted by Janowski functions. Also, the study has been extended to quantum calculus by replacing the ordinary derivative with a $ q $-derivative in the defined function class. Interesting results such as initial coefficients of inverse functions and Fekete-Szegö inequalities are obtained for the defined function classes. Several applications, known or new of the main results are also presented.



    加载中


    [1] M. H. Annaby, Z. S. Mansour, $q$-fractional calculus and equations, Lecture Notes in Mathematics, Heidelberg: Springer, 2012.
    [2] A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, New York: Springer, 2013.
    [3] M. Arif, Z. G. Wang, R. Khan, S. K. Lee, Coefficient inequalities for Janowski-Sakaguchi type functions associated with conic regions, Hacet. J. Math. Stat., 47 (2018), 261–271.
    [4] K. O. Babalola, On $\lambda$-pseudo-starlike functions, J. Classical Anal., 3 (2013), 137–147.
    [5] B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737–745. doi: 10.1137/0515057
    [6] A. W. Goodman, Univalent functions, Mariner Comp., 1983.
    [7] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [8] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Pol. Math., 28 (1973), 297–326. doi: 10.4064/ap-28-3-297-326
    [9] D. Kavitha, K. Dhanalakshmi, Subclasses of analytic functions with respect to symmetric and conjugate points bounded by conical domain, Adv. Math.: Sci. J., 9 (2020), 397–404.
    [10] B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334
    [11] B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of $q$-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 574. doi: 10.3390/sym13040574
    [12] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, Cambridge: Intrnational Press Inc., 1992.
    [13] S. N. Malik, S. Mahmood, M. Raza, S. Farman, S. Zainab, Coefficient inequalities of functions associated with petal type domains, Mathematics, 6 (2018), 298. doi: 10.3390/math6120298
    [14] Z. Nehari, Conformal mapping, New York: McGraw-Hill Book Co., 1952.
    [15] K. I. Noor, M. Arif, W. Ul-Haq, On $k$-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215 (2009), 629–635.
    [16] K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. doi: 10.1016/j.camwa.2011.07.006
    [17] S. O. Olatunji, H. Dutta, Fekete-Szego problem for certain analytic functions defined by $q$-derivative operator with respect to symmetric and conjugate points, Proyecciones, 37 (2018), 627–635. doi: 10.4067/S0716-09172018000400627
    [18] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
    [19] R. K. Raina, J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427–1433.
    [20] H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications, 1989.
    [21] H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of $q$-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1–15.
    [22] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425.
    [23] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mt. J. Math., 49 (2019), 2325–2346.
    [24] H. M. Srivastava, N. Khan, M. Darus, M. T. Rahim, Q. Z. Ahmad, Y. Zeb, Properties of spiral-like close-to-convex functions associated with conic domains, Mathematics, 7 (2019), 1–12.
    [25] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szego inequality for classes of ($p, q$)-starlike and ($p, q$)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Math. (RACSAM), 113 (2019), 3563–3584.
    [26] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14.
    [27] H. M. Srivastava, Operators of basic (or $q$-)calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0
    [28] H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or $q$-)calculus, AIMS Math., 6 (2021), 6580–6602. doi: 10.3934/math.2021388
    [29] M. S. Ur Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order $q$-derivatives to the subclass of $q$-starlike functions associated with the Janowski functions, AIMS Math., 6 (2021), 1110–1125. doi: 10.3934/math.2021067
    [30] M. S. Ur Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain, J. Inequal. Appl., 2020 (2020), 1–17.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2321) PDF downloads(118) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog