The purpose of this paper is to introduce and study a new subclass of analytic functions with respect to symmetric points associated to a conic region impacted by Janowski functions. Also, the study has been extended to quantum calculus by replacing the ordinary derivative with a $ q $-derivative in the defined function class. Interesting results such as initial coefficients of inverse functions and Fekete-Szegö inequalities are obtained for the defined function classes. Several applications, known or new of the main results are also presented.
Citation: Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy. Certain subclass of analytic functions with respect to symmetric points associated with conic region[J]. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742
The purpose of this paper is to introduce and study a new subclass of analytic functions with respect to symmetric points associated to a conic region impacted by Janowski functions. Also, the study has been extended to quantum calculus by replacing the ordinary derivative with a $ q $-derivative in the defined function class. Interesting results such as initial coefficients of inverse functions and Fekete-Szegö inequalities are obtained for the defined function classes. Several applications, known or new of the main results are also presented.
[1] | M. H. Annaby, Z. S. Mansour, $q$-fractional calculus and equations, Lecture Notes in Mathematics, Heidelberg: Springer, 2012. |
[2] | A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, New York: Springer, 2013. |
[3] | M. Arif, Z. G. Wang, R. Khan, S. K. Lee, Coefficient inequalities for Janowski-Sakaguchi type functions associated with conic regions, Hacet. J. Math. Stat., 47 (2018), 261–271. |
[4] | K. O. Babalola, On $\lambda$-pseudo-starlike functions, J. Classical Anal., 3 (2013), 137–147. |
[5] | B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737–745. doi: 10.1137/0515057 |
[6] | A. W. Goodman, Univalent functions, Mariner Comp., 1983. |
[7] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[8] | W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Pol. Math., 28 (1973), 297–326. doi: 10.4064/ap-28-3-297-326 |
[9] | D. Kavitha, K. Dhanalakshmi, Subclasses of analytic functions with respect to symmetric and conjugate points bounded by conical domain, Adv. Math.: Sci. J., 9 (2020), 397–404. |
[10] | B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334 |
[11] | B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of $q$-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 574. doi: 10.3390/sym13040574 |
[12] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, Cambridge: Intrnational Press Inc., 1992. |
[13] | S. N. Malik, S. Mahmood, M. Raza, S. Farman, S. Zainab, Coefficient inequalities of functions associated with petal type domains, Mathematics, 6 (2018), 298. doi: 10.3390/math6120298 |
[14] | Z. Nehari, Conformal mapping, New York: McGraw-Hill Book Co., 1952. |
[15] | K. I. Noor, M. Arif, W. Ul-Haq, On $k$-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215 (2009), 629–635. |
[16] | K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. doi: 10.1016/j.camwa.2011.07.006 |
[17] | S. O. Olatunji, H. Dutta, Fekete-Szego problem for certain analytic functions defined by $q$-derivative operator with respect to symmetric and conjugate points, Proyecciones, 37 (2018), 627–635. doi: 10.4067/S0716-09172018000400627 |
[18] | C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975. |
[19] | R. K. Raina, J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427–1433. |
[20] | H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications, 1989. |
[21] | H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of $q$-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1–15. |
[22] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. |
[23] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mt. J. Math., 49 (2019), 2325–2346. |
[24] | H. M. Srivastava, N. Khan, M. Darus, M. T. Rahim, Q. Z. Ahmad, Y. Zeb, Properties of spiral-like close-to-convex functions associated with conic domains, Mathematics, 7 (2019), 1–12. |
[25] | H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szego inequality for classes of ($p, q$)-starlike and ($p, q$)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Math. (RACSAM), 113 (2019), 3563–3584. |
[26] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14. |
[27] | H. M. Srivastava, Operators of basic (or $q$-)calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0 |
[28] | H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or $q$-)calculus, AIMS Math., 6 (2021), 6580–6602. doi: 10.3934/math.2021388 |
[29] | M. S. Ur Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order $q$-derivatives to the subclass of $q$-starlike functions associated with the Janowski functions, AIMS Math., 6 (2021), 1110–1125. doi: 10.3934/math.2021067 |
[30] | M. S. Ur Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain, J. Inequal. Appl., 2020 (2020), 1–17. |