Citation: Pinhong Long, Huo Tang, Wenshuai Wang. Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator[J]. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
[1] | J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17 (1915), 12-22. doi: 10.2307/2007212 |
[2] | K. Ahmad, M. Arif, J. L. Liu, Convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator, Turkish J. Math., 43 (2019), 1712-1720. doi: 10.3906/mat-1812-6 |
[3] | R. M. Ali, V. Ravichandran, N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput., 187 (2007), 35-46. |
[4] | M. Arif, H. M. Srivastava, S. Umar, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211-1221. doi: 10.1007/s13398-018-0539-3 |
[5] | S. D. Bernardi, Convex and starlike univalent functions, T. Am. Math. Soc., 135 (1969), 429-446. doi: 10.1090/S0002-9947-1969-0232920-2 |
[6] | R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), L711-L718. |
[7] | P. L. Duren, Univalent functions, New York: Springer, 1983. |
[8] | H. A. Dweby, M. Darus, A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN Math. Anal., 2013 (2013), 1-6. |
[9] | B. Frasin, C. Ramachandran, T. Soupramanien, New subclasses of analytic function associated with q-difference operator, European J. Pure Appl. Math., 10 (2017), 348-362. |
[10] | A. W. Goodman, Univalent functions, Vol.I, Washington, New Jersey: Polygonal Publishing House, 1983. |
[11] | G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge: Cambridge University Press, 1990. |
[12] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84. doi: 10.1080/17476939008814407 |
[13] | F. H. Jackson, q-Difference equations, Am. J. Math., 32 (1910), 305-314. doi: 10.2307/2370183 |
[14] | F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203. |
[15] | V. G. Kac, P. Cheung, Quantum calculus, New York: Universitext, Springer-Verlag, 2002. |
[16] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, P. Am. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9 |
[17] | Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13. |
[18] | R. J. Libera, Some classes of regular univalent functions, P. Am. Math. Soc., 16 (1965), 755-758. doi: 10.1090/S0002-9939-1965-0178131-2 |
[19] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis, International Press, 1994,157-169. |
[20] | S. Mahmmod, J. Sokól, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357. doi: 10.1007/s00025-016-0592-1 |
[21] | K. I. Noor, S. Riaz, M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3-11. |
[22] | S. D. Purohit, A new class of multivalently analytic functions associated with fractional q-calculus operators, Fract. Differ. Calc., 2 (2012), 129-138. |
[23] | S. D. Purohit, R. K. Raina, Certain subclasses of analytic functions associated with fractional qcalculus operators, Math. Scand., 109 (2011), 55-70. doi: 10.7146/math.scand.a-15177 |
[24] | M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, B. Khan, N. Khan, Partial sums of generalized q-Mittag-Leffler functions, AIMS Mathematics, 5 (2020), 408-420. doi: 10.3934/math.2020028 |
[25] | P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323. doi: 10.2298/AADM0701072C |
[26] | T. M. Seoudy, M. N. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10 (2016), 135-145. |
[27] | H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 19 (2017), 61-69. |
[28] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517 |
[29] | L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent q-starlike functions connected with circular domain, Mathematics, 7 (2019), 670. doi: 10.3390/math7080670 |
[30] | H. M. Srivastava, A. O. Mostafa, M. K. Aouf, H. M. Zayed, Basic and fractional q-calculus and associated Fekete-Szegö problem for p-vanlently q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489-509. doi: 10.18514/MMN.2019.2405 |
[31] | H. M. Srivastava, N. Raza, E. S. A. Abujarad, G. Srivastava, M. H. Abujarad, Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, RACSAM, 113 (2019), 3563-3584. doi: 10.1007/s13398-019-00713-5 |
[32] | H. M. Srivastava, N. Tuglu, M. Çetin, Some results on the q-analogues of the incomplete Fibonacci and Lucas polynomials, Miskolc Math. Notes, 20 (2019), 511-524. |
[33] | H. E. Ö. Uçar, Inequality for q-starlike functions, Appl. Math. Comput., 276 (2016), 122-126. |