Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

On a class of differential inclusions in the frame of generalized Hilfer fractional derivative

  • In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the φ-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a φ-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.

    Citation: Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad. On a class of differential inclusions in the frame of generalized Hilfer fractional derivative[J]. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193

    Related Papers:

    [1] Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen . Non-separated inclusion problem via generalized Hilfer and Caputo operators. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294
    [2] Saleh S. Redhwan, Sadikali L. Shaikh, Mohammed S. Abdo, Wasfi Shatanawi, Kamaleldin Abodayeh, Mohammed A. Almalahi, Tariq Aljaaidi . Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions. AIMS Mathematics, 2022, 7(2): 1856-1872. doi: 10.3934/math.2022107
    [3] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
    [4] Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112
    [5] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [6] Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah . Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014
    [7] M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666
    [8] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
    [9] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [10] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
  • In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the φ-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a φ-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.



    The theory of fractional differential equations (FDEs) and fractional differential inclusions (FDIs) have recently received significant attention in various fields of engineering and science, see [1,2,3,4], with many applications to name a few [5,6,7,8,9,10,11,12,13,14]. Recently, many diverse definitions of fractional derivatives (or fractional integrals) (FDs or FIs), the most common of which are Riemann-Liouville [2], Caputo [15] and Hilfer [10], have emerged. This is followed by numerous generalized fractional operators [16,17,18,19,20,21]. Moreover, new fabulous generalizations have emerged that combine a broad classes of the aforementioned fractional operators such as φ-Caputo [22], and φ-Hilfer [23].

    Over the years, many researchers are interested in debating the qualitative analysis of FDEs and FDIs like existence, uniqueness, controllability, stability, and optimizations, etc, see [24,25,26,27,28,29,30,31,32,33]. Some authors have consecrated their efforts to debate more qualitative analysis of this kinds of equations and inclusions, while others focused on applications and numerical solutions. A lot of related articles about the existence, and uniqueness of FDEs (FDIs) under the different types of FDs, can be found at [34,35,36,37,38,39,40,41,42]. For the recent development of fractional calculus theory and the importance of application of Hilfer FD, see [43,44,45].

    The authors in [46] have started the investigation of the following Hilfer-type FDEs

    {HDϱ1,ϱ2ϕ(τ)=f(τ,ϕ(τ))τ[a,b], 1<ϱ1<2, 0ϱ21,ϕ(a)=0, ϕ(b)=mi=1δiIλia+ϕ(θi), θi[a,b], (1.1)

    where λi>0, δiR, HDϱ1,ϱ2 and Iλia+ are the Hilfer FD of order (ϱ1,ϱ2) and the Riemann-Liouville FI of order λi,respectively. The existence and stability of solutions for implicit-type FDEs (1.1) in the ψ-Hilfer FD sense have been investigated by [47]. In this regard, Wongcharoen et al., in [48] studied the problem (1.1) with set-valued case, that is

    {HDϱ1,ϱ2ϕ(τ)F(τ,ϕ(τ))τ[a,b],ϕ(a)=0, ϕ(b)=mi=1δiIλia+ϕ(θi), θi[a,b], (1.2)

    where F:[a,b]×RP(R) is a set-valued map. Motivated by aforesaid works, we prove the existence of solutions for the following nonlinear FDI in the frame of φ-Hilfer FD with nonlocal IBCs

    {HDϱ1,ϱ2;φa+ϕ(τ)F(τ,ϕ(τ))τ(a,b), a>0,ϕ(a)=0, ϕ(b)=mi=1δiIλi;φa+ϕ(θi), (1.3)

    where HDϱ1,ϱ2;φa+ is the φ-Hilfer FD of order ϱ1(1,2) and type ϱ2[0,1], Iλi;φ is the φ-Riemann-Liouville FI of order λi>0, F is a set-valued map from [a,b]×R to the collection of P(R)R, <a<b<, δiR, i=1, 2, ... , m, 0aθ1<θ2<θ3<...<θmb.

    Remark 1.1. i) The FDI (1.3) involving φ-Hilfer FD is the more wide category of BVPs that combines the FDI involving φ -Riemann–Liouville FD (for ϱ2=0, φ(τ)=τ) and the FDI involving φ -Caputo FD (for ϱ2=1, φ(τ)=τ).

    ii) For various values of ϱ2 and φ, our problem (1.3) reduces to FDIs involving the FDs like Hilfer, Katugampola, Erd élyi-Kober, Hadamard, and many other FDs.

    iii) The acquired results in the current article include the results of Asawasamrit, et al. [46] (when φ(τ)=τ and F(τ,ϕ(τ))={f(τ,ϕ(τ)}) and Wongcharoen et al. [48] (when φ(τ)=τ).

    The novelty of this work lies in that the obtained results in this work unify most of the preceding results concerning FDIs.

    This article is framed as follows. In Section 2, we provide some essentials concepts of advanced fractional calculus, set-valued analysis, and FP methods. The existence results for a φ-Hilfer type inclusion problem (1.3) are obtained in Section 3. The results obtained will be illustrated by examples in the Section 4.

    In this portion, we introduce some notations and definitions of FC. Let =[a,b], ϱ1(1,2), ϱ2[0,1] where p=ϱ1+ϱ2(2ϱ1)(1,2]. Set

    C:=C(,R)={g:fR; g is continuous}.

    Clearly, C is a Banach space with norm

    g=sup{|g(τ)|:τ}.

    Denote L1(,R) be the Banach space of Lebesgue-integrable functions g:R with the norm

    gL1=|g(τ)|dτ.

    Let gL1(,R) and φCn(,R) be increasing such that φ(τ)0 for each τ.

    Definition 2.1 ([2]). The ϱth1-φ-Riemann-Liouville FI of g is given by

    Iϱ1;φa+g(τ)=1Γ(ϱ1)τaφ(ζ)(φ(τ)φ(ζ))ϱ11g(ζ)dζ.

    Definition 2.2 ([2]). The ϱth1-φ-Riemann-Liouville FD of g is given by

    Dϱ1;φa+g(τ)=(1φ(τ)ddτ)nI(nϱ1);φa+g(τ), n=[ϱ1]+1,nN.

    Definition 2.3 ([23]). The φ-Hilfer FD of g of order ϱ1 and type ϱ2 is given by

    HDϱ1,ϱ2;φa+g(τ)=Iϱ2(nϱ1);φa+ D[n]φ I(1ϱ2)(nϱ1);φa+g(τ),

    where D[n]φ=(1φ(τ)ddτ)n.

    Lemma 2.4 ([2,23]). Let ϱ1,ϱ2,κ>0. Then

    1) Iϱ1;φa+Iϱ2;φa+g(τ)=Iϱ1+ϱ2;φa+g(τ).

    2) Iϱ1;φa+(φ(τ)φ(a))κ1=Γ(κ)Γ(ϱ1+κ)(φ(τ)φ(a))ϱ1+κ1.

    Lemma 2.5 ([23]). For κ>0, ϱ1(n1,n) and ϱ2[0,1],

    HDϱ1,ϱ2;φa+(φ(τ)φ(a))z1=Γ(κ)Γ(κϱ1)(φ(τ)φ(a))zϱ11,κ>n.

    In case, if ϱ1(1,2) and κ(1,2], then

    HDϱ1,ϱ2;φa+(φ(τ)φ(a))κ1=0.

    Lemma 2.6 ([23]). If gCn(,R), n1<ϱ1<n and ϱ2(0,1), we have

    1) Iϱ1;φa+ HDϱ1,ϱ2;φa+ g(τ)=g(τ)nk=1(φ(τ)φ(a))pkΓ(pk+1)(1φ(τ)ddτ)nkI(1ϱ2)(nϱ1);φa+g(a).

    2) HDϱ1,ϱ2;φa+ Iϱ1;φa+g(τ)=g(τ).

    In regard to the problem (1.3), the next lemma is needed which was demonstrated in [47].

    Lemma 2.7 ([47]). Let FC and

    Ω=(φ(b)φ(a))p1Γ(p)mi=1δiΓ(p+λi)(φ(θi)φ(a))p+λi10, (2.1)

    then, the solution of nonlocal BVP

    {HDϱ1,ϱ2;φa+ ϕ(τ)=F(τ)τ(a,b),ϕ(a)=0,ϕ(b)=mi=1δiIλi;φa+ϕ(θi), (2.2)

    is obtained as

    ϕ(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiIϱ1+λi;φa+F(θi)Iϱ1;φa+F(b))+Iϱ1;φa+F(τ). (2.3)

    We requisition some basics related to the theory of set-valued maps. To this purpose, consider the Banach space (E,.) and the multi-valued map M:EP(E), (i) is closed (convex) valued if M(ϕ) is closed (convex) ϕE; (ii) is bounded if M(D)=ϕDM(ϕ) is bounded in E for all bounded set D of E, i.e., supϕD{sup{|α|:αM(ϕ)}}<; (iii) is measurable if αR, the function τd(α,M(τ))=inf{|αλ|:λM(τ)} is measurable.

    For other definitions such as completely continuous, upper semi-continuity (u.s.c.), we indicate to [49]. Further, the set of selections of F is given by

    RF,α={ϰL1(,R):ϰ(τ)F(τ,α) for a.e. τ}.

    Consider

    Pσ(E)={MP(E):M and has property σ},

    where Pb, Pcl, Pcp, and Pc are the categories of all closed, bounded, compact and convex subsets of E, respectively.

    Definition 2.8. Set-valued map F:×RP(R) is a Carathéodory if τF(τ,ϕ) is measurable for any ϕR, and ϕF(τ,ϕ) is u.s.c., for (a.e.) all τ.

    Besides, a set-valued map F is called L1-Carathéodory if w>0, there exists ΦL1(,R+) such that

    F(τ,ϕ)=sup{|ϰ|:ϰF(τ,ϕ)}Φ(τ),

    for a.e. τ, and for all ϕw.

    Now, we offer the next essential lemmas:

    Lemma 2.9 ([7]). Let Gr(M)={(ϕ,α)E×Z,αM(ϕ)} be a graph of M. If M:EPcl(Z) is u.s.c., then Gr(M) is a closed subset of E×Z. Conversely, if M is completely continuous and has a closed graph, then it is u.s.c.

    Lemma 2.10 ([50]). Let E be a separable Banach space. F:f×RPcp,c(E) be an L1-Carath éodory set-valued map, and T:L1(,E)C(,E) be a linear continuous mapping. Then the operator

    TRF:C(,E)Pcp,c(C(,E)),ϕ(TRF)(ϕ)=T(RF,ϕ),

    is a closed graph operator in C(,E)×C(,E).

    Definition 3.1. A function ϕC is a solution of (1.3), if there is ϰL1(,R) with ϰ(τ)F(τ,ϕ) τ fulfilling the nonlocal IBC

    ϕ(a)=0, ϕ(b)=mi=1δiIλi;Υa+ϕ(θi),

    and

    ϕ(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiIϱ1+λi;φa+ϰ(θi)Iϱ1;φa+ϰ(b))+Iϱ1;φa+ϰ(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+1Γ(α)τaφ(ζ)(φ(τ)φ(ζ))ϱ11ϰ(ζ)dζ.

    The first consequence transacts with the convex valued F depending on Leray-Schauder-type for set-valued maps [51].

    Theorem 3.2. Let

    η=mi=1|δi|(φ(b)φ(a))ϱ1+λi+p1|Ω|Γ(p)Γ(ϱ1+λi+1)+(φ(b)φ(a))p+ϱ11|Ω|Γ(p)Γ(ϱ1+1)+(φ(b)φ(a))ϱ1Γ(ϱ1+1), (3.1)

    and suppose that

    (As1) F:×RPcp,c(R) is a L1-Carathéodory set-valued map.

    (As2) ˜Z1C(,[0,)) and a nondecreasing ˜Z2C([0,),[0,)) with

    F(τ,ϕ)P=sup{|α|:αF(τ,ϕ)}˜Z1(τ)˜Z2(ϕ),(τ,ϕ)×R.

    (As3) There is a constant K>0 such that

    Kη˜Z1˜Z2(K)>1. (3.2)

    Then the problem (1.3) has at least one solution on .

    Proof. At first, to convert (1.3) into a FP problem, we define the operator ˜B:CP(C) by

    ˜B(ϕ)={˜pC:˜p(τ)={(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(τ)φ(ζ))ϱ11ϰ(ζ)dζ}, (3.3)

    for ϰRF,ϕ. Clearly, the solution of (1.3) is the FP of the operator ˜B. Proof cases will be given in a number of steps as:

    Case 1. ˜B(ϕ) is convex for any ϕC.

    Let ˜p1, ˜p2˜B(ϕ). Then there exist ϰ1, ϰ2RF,ϕ such that for each τ

    ˜pj(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰj(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰj(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(τ)φ(ζ))ϱ11ϰj(ζ)dζ, j=1,2.

    Let η[0,1]. Then for each τ

    [η˜p1+(1η)˜p2](τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1[ηϰ1(ζ)+(1η)ϰ2(ζ)]dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11[ηϰ1(ζ)+(1η)ϰ2(ζ)]dζ)+1Γ(ϱ1)τaφ(ζ)(φ(τ)φ(ζ))ϱ11[ηϰ1(ζ)+(1η)ϰ2(ζ)]dζ.

    As F possesses convex values, RF,ϕ is convex and [ηϰ1(ζ)+(1η)ϰ2(ζ)]RF,ϕ. Thus, η˜p1+(1η)˜p2˜B(ϕ).

    Case 2. The image of a bounded set under ˜B is bounded in C.

    For rR+, let Dr={ϕC:ϕr} be a bounded set in C. Then for each ˜p˜B(ϕ) and ϕDr, there exists ϰRF,ϕ such that

    ˜p(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ.

    From the hypothesis (As2) and τ, we get

    |˜p(τ)|(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1|ϰ(ζ)|dζ+1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11|ϰ(ζ)|dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11|ϰ(ζ)|dζ(φ(τ)φ(a))p1˜Z1˜Z2(r)|Ω|Γ(p)(mi=1|δi|Γ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1dζ+1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11dζ)+˜Z1˜Z2(r)Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11dζ˜Z1˜Z2(r)(mi=1|δi|(φ(b)φ(a))ϱ1+λi+p1|Ω|Γ(p)Γ(ϱ1+λi+1)+(φ(b)φ(a))p+ϱ11|Ω|Γ(p)Γ(ϱ1+1)+(φ(b)φ(a))ϱ1Γ(ϱ1+1)).

    Thus

    ˜pη˜Z1˜Z2(r).

    Case 3. We prove that ˜B(Dr) is equicontinuous.

    Let ϕDr and ˜p˜B(ϕ). Then there is a function ϰRF,ϕ such that

    ˜p(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ, τ.

    Let τ1,τ2, τ1<τ2. Then

    |˜p(τ2)˜p(τ1)|(φ(τ2)φ(a))p1(φ(τ1)φ(a))p1|Ω|Γ(p)(mi=1|δi|Γ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1|ϰ(ζ)|dζ+1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11|ϰ(ζ)|dζ)+1Γ(ϱ1)τ1aφ(ζ)((φ(τ2)φ(ζ))ϱ11(φ(τ1)φ(ζ))ϱ11)|ϰ(ζ)|dζ+1Γ(ϱ1)τ2τ1φ(s)(φ(τ2)φ(ζ))ϱ11|ϰ(ζ)|dζ((φ(τ2)φ(a))p1(φ(τ1)φ(a))p1)˜Z1˜Z2(r)|Ω|Γ(p)(mi=1|δi|Γ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1dζ+1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11dζ)+˜Z1˜Z2(r)Γ(ϱ1+1)(((φ(τ2)φ(a))ϱ1(φ(τ1)φ(a))ϱ1)).

    As τ1τ2, we obtain

    |˜p(τ2)˜p(τ1)|0.

    So, ˜B(Dr) is equicontinuous. Based on Arzela-Ascoli theorem and above cases (23), we conclude that ˜B is completely continuous.

    Case 4. The graph of ˜B is closed.

    Let ϕnϕ, ˜pn˜B(ϕn) and ˜pn converges to ˜p. We prove that ˜p˜B(ϕ). Since ˜pn˜B(ϕn), there exists ϰnRF,ϕn such that

    ˜pn(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰn(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰn(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰn(ζ)dζ, τ.

    Thus, we need to show that there exists ϰRF,ϕ such that, for each τ,

    ˜p(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ.

    Define T:L1(,R)C(,R) such that be continuous linear operator by

    ϰT(ϰ)(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ, τ.

    Observe that

    ˜pn˜p=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1(ϰn(ζ)ϰ(ζ))dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11(ϰn(ζ)ϰ(ζ))dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11(ϰn(ζ)ϰ(ζ))dζ0,

    when n. So in light of Lemma (2.10) that TRF,ϕ is a closed graph operator. Besides, we have

    ˜pnT(RF,ϕn).

    Since ϕnϕ, Lemma (2.10) gives

    ˜p(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ.

    for some ϰRF,ϕ.

    Case 5. There exists an open set NC with ϕδ˜B(ϕ) for every δ(0,1) and ϕN.

    Let δ(0,1) and ϕδ˜B(ϕ). Then there exists ϰRF,ϕ such that

    |ϕ(τ)|=|δ(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+δΓ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ|η˜Z1˜Z2(ϕ).

    Thus, we have

    |ϕ(τ)|η˜Z1˜Z2(ϕ), τ.

    Hence, we obtain

    ϕη˜Z1˜Z2(ϕ)1.

    From (As3), there is a positive constant K such that ϕK. We define the set N by

    N={ϕC:ϕ<K}.

    From previous cases, ˜B:¯NP(C) is completely continuous and u.s.c. Depending on the choice of N, there is no ϕ N such that ϕδ˜B(ϕ) for some δ(0,1). Therefore, We can infer that problem (1.3) possesses at least one solution ϕ¯N according to Leray-Schauder theorem for multi-valued maps.

    In this part, we give another existence criterion for φ-Hilfer FDI (1.3) according to new assumptions. In what follows, we prove the existence result when F has a non convex-valued using Covitz and Nadler theorem [52].

    Let (E,d) be a metric space. Consider Hd:P(E)×P(E)R+{} defined by

    Hd(˜M,˜N)=max{sup˜m˜Md(˜m,˜N),sup˜n˜Nd(˜M,˜n)},

    where d(˜M,˜n)=inf˜m˜Md(˜m,˜n) and d(˜m,˜N)=inf˜n˜Nd(˜m,˜n). Then (Pb,cl(E),Hd) is a metric space (see [53]).

    Definition 3.3. A set-valued operator ˜B:EPcl(E) is κ-Lipschitz iff κ>0 such that

    Hd(˜B(ϕ),˜B(α))κd(ϕ,α) for any ϕ, αE.

    Particularly, if κ<1, then ˜B is a contraction.

    Theorem 3.4. Suppose that

    (As4) F:×RPcp(R) is such that F(.,ϕ):fPcp(R) is measurable for each ϕR.

    (As5) Hd(F(τ,ϕ),F(τ,¯ϕ))˜r(τ)|ϕ¯ϕ| for (a.e.) all τ and ϕ,¯ϕR with ˜rC(,R+) and d(0,F(τ,0))˜r(τ) for (a.e.) all τ.

    Then the problem (1.3) has at least one solution on if

    η˜r<1,

    where η is defined in (3.1).

    Proof. In view of Theorem III.6 in [8] and the assumption (As4), F has a measurable selection ϰ:R, ϰL1(,R), as well as F is integrably bounded. Thus, RF,ϕ . Now, we prove that ˜B:CP(C) defined in (3.3) satisfies the assumptions of FPT of Nadler and Covitz. To show that ˜B(ϕ) is closed for any ϕC. Let {un}n0˜B(ϕ) be such that unu (n) in C. Then uC and there is ϰnRF,ϕn such that

    un(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰn(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰn(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰn(ζ)dζ, τ.

    As F possesses compact values, so there is a subsequence ϰnϰ in L1(,R). Consequently. ϰRF,ϕ and we get

    un(τ)u(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ(ζ)dζ, τ.

    Hence u˜B(ϕ).

    Next, we show that there is a ϑ(0,1), (ϑ=η˜r) such that

    Hd(˜B(ϕ),˜B(¯ϕ))ϑϕ¯ϕ for each ϕ, ¯ϕC.

    Let ϕ, ¯ϕC and ˜p1˜B(ϕ). Then there exists ϰ1(τ)F(τ,ϕ(τ)) such that, for each τ

    ˜p1(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ1(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ1(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ1(ζ)dζ.

    By (As5), we have

    Hd(F(τ,ϕ),F(τ,¯ϕ))˜r(τ)|ϕ(τ)¯ϕ(τ)|.

    Thus, there exists ˜w(τ)F(τ,¯ϕ) such that

    |ϰ1(τ)˜w|˜r(τ)|ϕ(τ)¯ϕ(τ)|, τ.

    Constructing a set-valued map E:P(R) as

    E(τ)={˜wR:|ϰ1(τ)˜w|˜r(τ)|ϕ(τ)¯ϕ(τ)|}.

    We can infer that the set-valued map E(τ)F(τ,¯ϕ) is measurable, because ϰ1 and Δ=˜r|ϕ¯ϕ| are both measurable. Now, we choose ϰ2(τ)F(τ,¯ϕ) with

    |ϰ1(τ)ϰ2(τ)|˜r(τ)|ϕ(τ)¯ϕ(τ)|, τ.

    Define

    ˜p2(τ)=(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1ϰ2(ζ)dζ1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11ϰ2(ζ)dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11ϰ2(ζ)dζ, τ.

    As a result, we get

    |˜p1(τ)˜p2(τ)|(φ(τ)φ(a))p1ΩΓ(p)(mi=1δiΓ(ϱ1+λi)θiaφ(ζ)(φ(θi)φ(ζ))ϱ1+λi1|ϰ1(ζ)ϰ2(ζ)|dζ+1Γ(ϱ1)baφ(ζ)(φ(b)φ(ζ))ϱ11|ϰ1(ζ)ϰ2(ζ)|dζ)+1Γ(ϱ1)τaφ(ζ)(φ(b)φ(ζ))ϱ11|ϰ1(ζ)ϰ2(ζ)|dζmϕ¯ϕmi=1|δi|(φ(b)φ(a))ϱ1+λi+p1|Ω|Γ(p)Γ(ϱ1+λi+1)+(φ(b)φ(a))p+ϱ11|Ω|Γ(p)Γ(ϱ1+1)+(φ(b)φ(a))ϱ1Γ(ϱ1+1).

    Hence

    ˜p1˜p2η˜rϕ¯ϕ.

    Analogously, interchanging the roles of ϕ and ¯ϕ, we get

    Hd(˜B(ϕ),˜B(¯ϕ))η˜rϕ¯ϕ.

    As ˜B is a contraction, we conclude that it has a FP ϕ which is a solution of (1.3) according to the Covitz and Nadler theorem.

    In this section, we give some special cases of FDIs to illustrate the obtained outcomes.

    Consider the FDIs of the following type

    {HDϱ1,ϱ2;φa+ϕ(τ)F(τ,ϕ)τ(a,b),ϕ(a)=0, ϕ(b)=mi=1δiIλi,φa+ϕ(θi). (4.1)

    The following instances are special cases of FDIs defined by (4.1).

    Example 4.1. Using the following data φ(τ)=logτ, ϱ20, a=1, b=e, ϱ1=32, δ1=12, δ2=110, λ1=14, λ2=52, θ1=32, θ2=2 in (4.1). Thus, the problem (4.1) convert to

    {HD32,0;logτ1+ϕ(τ)F(τ,ϕ)τ(1,e),ϕ(1)=0, ϕ(e)=12I14,logτ1+ϕ(32)+110I52,logτ1+ϕ(2), (4.2)

    with p=32. Let F:[1,e]×RP(R) defined by

    ϕF(τ,ϕ)=[1(τ3+6exp(τ2))ϕ23(ϕ2+2),1τ+8|ϕ||ϕ|+1]. (4.3)

    From above data we get Ω=0.846400. Clearly F fulfills (As1) and

    F(τ,ϕ)P=sup{|α|:αF(τ,ϕ)}1τ+8=˜Z1(τ)˜Z2(ϕ),

    which yields ˜Z1=13 and ˜Z2(ϕ)=1. Therefore, the condition (As2) is fulfilled, and by (As3), it found that K>0.72503.

    Hence all suppositions of Theorem 3.2 hold, and so there is at least one solution of the problem (4.2) on [1,e].

    Example 4.2. Using the following data φ(τ)=τ, ϱ20, a=0, b=1, ϱ1=54, δ1=3, δ2=5, λ1=14, λ2=12, θ1=14, θ2=12 in (4.1). Thus, the problem (4.1) convert to

    {HD54,0;τ0+ϕ(τ)F(τ,ϕ)τ(0,1),ϕ(0)=0, ϕ(1)=3I14,τ0+ϕ(14)+5I12,τ0+ϕ(12), (4.4)

    with p=54. Let F:[0,1]×RP(R) defined by

    ϕF(τ,ϕ)=[exp(ϕ4)+τ+4,|ϕ||ϕ|+1+τ+2]. (4.5)

    From above data we get Ω=3.82410. Clearly F fulfills (As1) and

    F(τ,ϕ)P=sup{|α|:αF(τ,ϕ)}6=˜Z1(τ)˜Z2(ϕ),

    where ˜Z1=1 and ˜Z2(ϕ)=6. Therefore, the condition (As2) is valid, and by (As3), it follows that K>16.111.

    Hence all suppositions of Theorem 3.2 hold, and so there is at least one solution of (4.4) on [0,1].

    Example 4.3. Using the following data φ(τ)=τ, ϱ212, a=0, b=1, ϱ1=74, δ1=3, δ2=5, λ1=14, λ2=12, θ1=14, θ2=12 in (4.1). Thus, the problem (4.1) convert to

    {HD74,12;τ0+ϕ(τ)F(τ,ϕ)τ(0,1),ϕ(0)=0, ϕ(1)=3I14,τ0+ϕ(14)+5I12,τ0+ϕ(12), (4.6)

    with p=158. Let F:[0,1]×RP(R) given by

    ϕF(τ,ϕ)=[0,2sin(ϕ)(τ2+16)+120]. (4.7)

    From above data we get Ω=1.12370. Obviously Hd(F(τ,ϕ),F(τ,¯ϕ))˜r(τ)|ϕ¯ϕ|, where ˜r(τ)=2(τ2+16) and d(0,F(τ,0))=120˜r(τ) for (a.e.) all τ[0,1]. Additionally, we obtain ˜r=18 which leads to η˜r0.55<1. Accordingly, all hypotheses of Theorem (3.4) are satisfied, and so there exists at least one solution of the problem (4.6) on [0,1].

    In this article, we have considered a class of BVP's for φ -Hilfer-type FDIs subjected to nonlocal IBC. The existence results have been proved by considering the kinds when the set-valued map has convex or nonconvex values. In the case of a convex set-valued map, we have applied the Leray-Schauder FPT, whereas the Nadler's and Covitz's FPT concern set-valued contractions are used in the case of a nonconvex set-valued map. The obtained outcomes are well explained through many relevant illustrative examples. We have settled that current results are new in the frame of φ-Hilfer FDIs and it covers many findings in the existing literature as a special case as shown in the Remark 1.1.

    In future studies. We will try to expand the problem presented in this article to a general structure using the Mittag-Leffler power law [21] and fractal fractional operators [54].

    The authors B. Abdalla and T. Abdeljawad would like to thank Prince Sultan University for paying the APC and for the support through the TAS research lab.

    The authors declare that they have no conflict of interest.



    [1] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-verlag, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-14574-2.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006. doi: 10.1016/S0304-0208(06)80001-0.
    [3] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge, UK: Cambridge Scientific Publishers, 2009.
    [4] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [5] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. doi: 10.1186/s13661-020-01361-0. doi: 10.1186/s13661-020-01361-0
    [6] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413–3442. doi: 10.1155/S0161171203301486. doi: 10.1155/S0161171203301486
    [7] K. Deimling, Set-valued differential equations, De Gruyter, Berlin, 1992.
    [8] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Berlin/Heidelberg: Springer, 1977.
    [9] L. Górniewicz, Topological fixed point theory of multivalued mappings, Dordrecht: Springer, 1999. doi: 10.1007/978-94-015-9195-9.
    [10] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. doi: 10.1142/3779.
    [11] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668. doi: 10.1016/j.chaos.2021.110668. doi: 10.1016/j.chaos.2021.110668
    [12] V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, New York: Springer, 2011.
    [13] S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. doi: 10.3906/mat-2010-70. doi: 10.3906/mat-2010-70
    [14] Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Amsterdam: Elsevier, 2015. doi: 10.1016/B978-0-12-804277-9.50006-7.
    [15] M. Caputo, Linear model of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x. doi: 10.1111/j.1365-246X.1967.tb02303.x
    [16] J. Hadamard, Essai sur létude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8 (1892), 101–186.
    [17] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [18] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142. doi: 10.1186/1687-1847-2012-142
    [19] R. Almeida, A Gronwall inequality for a general Caputo fractional operator, arXiv. Available from: https://arXiv.org/abs/1705.10079.
    [20] M. R. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201. doi: 10.12785/pfda/010201
    [21] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
    [22] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006. doi: 10.1016/j.cnsns.2016.09.006
    [23] J. V. C. Sousa, E. C. D. Oliveira, On the φ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
    [24] N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equations, 246 (2009), 3834–3863. doi: 10.1016/j.jde.2009.03.004. doi: 10.1016/j.jde.2009.03.004
    [25] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. doi: 10.1016/j.heliyon.2020.e05109. doi: 10.1016/j.heliyon.2020.e05109
    [26] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Solitons Fractals, 141 (2020), 110341. doi: 10.1016/j.chaos.2020.110341. doi: 10.1016/j.chaos.2020.110341
    [27] M. S. Abdo, A. G. Ibrahim, S. K. Panchal, State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis, 54 (2018), 139–159. doi: 10.17114/j.aua.2018.54.10. doi: 10.17114/j.aua.2018.54.10
    [28] M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Noncompact perturbation of nonconvex noncompact sweeping process with delay, Comment. Math. Univ. Carol., 11 (2020), 1–22. doi: 10.14712/1213-7243.2020.014. doi: 10.14712/1213-7243.2020.014
    [29] M. Benchohra, A. Ouahab, Initial boundary value problems for second order impulsive functional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 2003 (2003), 1–10. doi: 10.14232/ejqtde.2003.1.3. doi: 10.14232/ejqtde.2003.1.3
    [30] A. Lachouri, A. Ardjouni, A. Djoudi, Existence results for nonlinear sequential Caputo and Caputo-Hadamard fractional differential inclusions with three-point boundary conditions, Math. Eng. Sci. Aerospace, 12 (2021), 163–179.
    [31] A. Lachouri, A. Ardjouni, A. Djoudi, Investigation of the existence and uniqueness of solutions for higher order fractional differential inclusions and equations with integral boundary conditions. J. Interdiscip. Math., 2021 (2021), 1–19. doi: 10.1080/09720529.2021.1877901.
    [32] A. Lachouri, M. S. Abdo, A. Ardjouni, B. Abdalla, T. Abdeljawad, Hilfer fractional differential inclusions with Erdé lyi-Kober fractional integral boundary condition, Adv. Differ. Equ., 2021 (2021), 244. doi: 10.1186/s13662-021-03397-7. doi: 10.1186/s13662-021-03397-7
    [33] J. Wang, A. G. Ibrahim, D. O'Regan, Y. Zhou, Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29 (2018), 1362–1392. doi: 10.1016/j.indag.2018.07.002. doi: 10.1016/j.indag.2018.07.002
    [34] M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving φ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. doi: 10.4208/aamm.OA-2018-0143. doi: 10.4208/aamm.OA-2018-0143
    [35] A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 101. doi: 10.1186/s13662-019-2047-y. doi: 10.1186/s13662-019-2047-y
    [36] A. Ardjouni, A. Lachouri, A. Djoudi, Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Open J. Math. Anal., 3 (2019), 106–111. doi: 10.30538/psrp-oma2019.0044. doi: 10.30538/psrp-oma2019.0044
    [37] D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. doi: 10.1016/j.aej.2020.04.053. doi: 10.1016/j.aej.2020.04.053
    [38] F. Jarad, E. U˜gurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z. doi: 10.1186/s13662-017-1306-z
    [39] A. Lachouri, A. Ardjouni, A Djoudi, Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations, Math. Morav., 24 (2020), 109–122. doi: 10.5937/MatMor2001109L. doi: 10.5937/MatMor2001109L
    [40] A. Lachouri, A. Ardjouni, A. Djoudi, Positive solutions of a fractional integro-differential equation with integral boundary conditions, Commun. Optim. Theory, 2020 (2020), 1–9. doi: 10.23952/cot.2020.1. doi: 10.23952/cot.2020.1
    [41] A. Lachouri, A. Ardjouni, A. Djoudi, Existence and uniqueness results for nonlinear implicit Riemann-Liouville fractional differential equations with nonlocal conditions, Filomat, 34 (2020), 4881–4891. doi: 10.2298/FIL2014881L. doi: 10.2298/FIL2014881L
    [42] S. Rezapour, A. Imran, A. Hussain, F. Martínez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. doi: 10.3390/sym13030469. doi: 10.3390/sym13030469
    [43] R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. doi: 10.1016/j.aej.2020.01.055. doi: 10.1016/j.aej.2020.01.055
    [44] R. Subashini, C. Ravichandran, K. Jothimani, H. M. Baskonus, Existence results of Hilfer integro-differential equations with fractional order, Discrete Cont. Dyn. Sys. S., 13 (2020), 911–923. doi: 10.3934/dcdss.2020053. doi: 10.3934/dcdss.2020053
    [45] K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fractals, 146 (2021), 110915. doi: 10.1016/j.chaos.2021.110915. doi: 10.1016/j.chaos.2021.110915
    [46] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. doi: 10.4134/BKMS.b170887. doi: 10.4134/BKMS.b170887
    [47] D. A. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Meth. Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521. doi: 10.1002/mma.6521
    [48] A. Wongcharoen, S. K. Ntouyas, J. Tariboon, Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions, Mathematics, 8 (2020), 1905. doi: 10.3390/math8111905. doi: 10.3390/math8111905
    [49] M. Aitalioubrahim, S. Sajid, Higher-order boundary value problems for Caratheodory differential inclusions, Miskolc Math. Notes, 9 (2008), 7–15. doi: 10.18514/MMN.2008.180. doi: 10.18514/MMN.2008.180
    [50] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys., 13 (1965), 781–786.
    [51] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. doi: 10.1007/978-0-387-21593-8.
    [52] H. Covitz, S. B. Nadler Jr, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. doi: 10.1007/BF02771543. doi: 10.1007/BF02771543
    [53] M. Kisielewicz, Differential inclusions and optimal control, Kluwer, Dordrecht, The Netherlands, 1991.
    [54] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
  • This article has been cited by:

    1. Hamid Lmou, Khalid Hilal, Ahmed Kajouni, On a class of fractional Langevin inclusion with multi-point boundary conditions, 2022, 41, 2175-1188, 1, 10.5269/bspm.62725
    2. Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Kamal Shah, Thabet Abdeljawad, Investigation of fractional order inclusion problem with Mittag-Leffler type derivative, 2023, 14, 1662-9981, 10.1007/s11868-023-00537-3
    3. Lihong Zhang, Xuehui Liu, Guotao Wang, Study of (k,Θ)-Hilfer fractional differential and inclusion systems on the glucose graph, 2024, 10, 24058440, e31285, 10.1016/j.heliyon.2024.e31285
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2146) PDF downloads(91) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog