In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the φ-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a φ-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.
Citation: Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad. On a class of differential inclusions in the frame of generalized Hilfer fractional derivative[J]. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
[1] | Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen . Non-separated inclusion problem via generalized Hilfer and Caputo operators. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294 |
[2] | Saleh S. Redhwan, Sadikali L. Shaikh, Mohammed S. Abdo, Wasfi Shatanawi, Kamaleldin Abodayeh, Mohammed A. Almalahi, Tariq Aljaaidi . Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions. AIMS Mathematics, 2022, 7(2): 1856-1872. doi: 10.3934/math.2022107 |
[3] | Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450 |
[4] | Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112 |
[5] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[6] | Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah . Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014 |
[7] | M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666 |
[8] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[9] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[10] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the φ-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a φ-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.
The theory of fractional differential equations (FDEs) and fractional differential inclusions (FDIs) have recently received significant attention in various fields of engineering and science, see [1,2,3,4], with many applications to name a few [5,6,7,8,9,10,11,12,13,14]. Recently, many diverse definitions of fractional derivatives (or fractional integrals) (FDs or FIs), the most common of which are Riemann-Liouville [2], Caputo [15] and Hilfer [10], have emerged. This is followed by numerous generalized fractional operators [16,17,18,19,20,21]. Moreover, new fabulous generalizations have emerged that combine a broad classes of the aforementioned fractional operators such as φ-Caputo [22], and φ-Hilfer [23].
Over the years, many researchers are interested in debating the qualitative analysis of FDEs and FDIs like existence, uniqueness, controllability, stability, and optimizations, etc, see [24,25,26,27,28,29,30,31,32,33]. Some authors have consecrated their efforts to debate more qualitative analysis of this kinds of equations and inclusions, while others focused on applications and numerical solutions. A lot of related articles about the existence, and uniqueness of FDEs (FDIs) under the different types of FDs, can be found at [34,35,36,37,38,39,40,41,42]. For the recent development of fractional calculus theory and the importance of application of Hilfer FD, see [43,44,45].
The authors in [46] have started the investigation of the following Hilfer-type FDEs
{HDϱ1,ϱ2ϕ(τ)=f(τ,ϕ(τ)), τ∈[a,b], 1<ϱ1<2, 0≤ϱ2≤1,ϕ(a)=0, ϕ(b)=m∑i=1δiIλia+ϕ(θi), θi∈[a,b], | (1.1) |
where λi>0, δi∈R, HDϱ1,ϱ2 and Iλia+ are the Hilfer FD of order (ϱ1,ϱ2) and the Riemann-Liouville FI of order λi,respectively. The existence and stability of solutions for implicit-type FDEs (1.1) in the ψ-Hilfer FD sense have been investigated by [47]. In this regard, Wongcharoen et al., in [48] studied the problem (1.1) with set-valued case, that is
{HDϱ1,ϱ2ϕ(τ)∈F(τ,ϕ(τ)), τ∈[a,b],ϕ(a)=0, ϕ(b)=m∑i=1δiIλia+ϕ(θi), θi∈[a,b], | (1.2) |
where F:[a,b]×R→P(R) is a set-valued map. Motivated by aforesaid works, we prove the existence of solutions for the following nonlinear FDI in the frame of φ-Hilfer FD with nonlocal IBCs
{HDϱ1,ϱ2;φa+ϕ(τ)∈F(τ,ϕ(τ)), τ∈(a,b), a>0,ϕ(a)=0, ϕ(b)=m∑i=1δiIλi;φa+ϕ(θi), | (1.3) |
where HDϱ1,ϱ2;φa+ is the φ-Hilfer FD of order ϱ1∈(1,2) and type ϱ2∈[0,1], Iλi;φ is the φ-Riemann-Liouville FI of order λi>0, F is a set-valued map from [a,b]×R to the collection of P(R)⊂R, −∞<a<b<∞, δi∈R, i=1, 2, ... , m, 0≤a≤θ1<θ2<θ3<...<θm≤b.
Remark 1.1. i) The FDI (1.3) involving φ-Hilfer FD is the more wide category of BVPs that combines the FDI involving φ -Riemann–Liouville FD (for ϱ2=0, φ(τ)=τ) and the FDI involving φ -Caputo FD (for ϱ2=1, φ(τ)=τ).
ii) For various values of ϱ2 and φ, our problem (1.3) reduces to FDIs involving the FDs like Hilfer, Katugampola, Erd élyi-Kober, Hadamard, and many other FDs.
iii) The acquired results in the current article include the results of Asawasamrit, et al. [46] (when φ(τ)=τ and F(τ,ϕ(τ))={f(τ,ϕ(τ)}) and Wongcharoen et al. [48] (when φ(τ)=τ).
The novelty of this work lies in that the obtained results in this work unify most of the preceding results concerning FDIs.
This article is framed as follows. In Section 2, we provide some essentials concepts of advanced fractional calculus, set-valued analysis, and FP methods. The existence results for a φ-Hilfer type inclusion problem (1.3) are obtained in Section 3. The results obtained will be illustrated by examples in the Section 4.
In this portion, we introduce some notations and definitions of FC. Let ℧=[a,b], ϱ1∈(1,2), ϱ2∈[0,1] where p=ϱ1+ϱ2(2−ϱ1)∈(1,2]. Set
C:=C(℧,R)={g:f→R; g is continuous}. |
Clearly, C is a Banach space with norm
‖g‖=sup{|g(τ)|:τ∈℧}. |
Denote L1(℧,R) be the Banach space of Lebesgue-integrable functions g:℧→R with the norm
‖g‖L1=∫℧|g(τ)|dτ. |
Let g∈L1(℧,R) and φ∈Cn(℧,R) be increasing such that φ′(τ)≠0 for each τ∈℧.
Definition 2.1 ([2]). The ϱth1-φ-Riemann-Liouville FI of g is given by
Iϱ1;φa+g(τ)=1Γ(ϱ1)∫τaφ′(ζ)(φ(τ)−φ(ζ))ϱ1−1g(ζ)dζ. |
Definition 2.2 ([2]). The ϱth1-φ-Riemann-Liouville FD of g is given by
Dϱ1;φa+g(τ)=(1φ′(τ)ddτ)nI(n−ϱ1);φa+g(τ), n=[ϱ1]+1,n∈N. |
Definition 2.3 ([23]). The φ-Hilfer FD of g of order ϱ1 and type ϱ2 is given by
HDϱ1,ϱ2;φa+g(τ)=Iϱ2(n−ϱ1);φa+ D[n]φ I(1−ϱ2)(n−ϱ1);φa+g(τ), |
where D[n]φ=(1φ′(τ)ddτ)n.
Lemma 2.4 ([2,23]). Let ϱ1,ϱ2,κ>0. Then
1) Iϱ1;φa+Iϱ2;φa+g(τ)=Iϱ1+ϱ2;φa+g(τ).
2) Iϱ1;φa+(φ(τ)−φ(a))κ−1=Γ(κ)Γ(ϱ1+κ)(φ(τ)−φ(a))ϱ1+κ−1.
Lemma 2.5 ([23]). For κ>0, ϱ1∈(n−1,n) and ϱ2∈[0,1],
HDϱ1,ϱ2;φa+(φ(τ)−φ(a))z−1=Γ(κ)Γ(κ−ϱ1)(φ(τ)−φ(a))z−ϱ1−1,κ>n. |
In case, if ϱ1∈(1,2) and κ∈(1,2], then
HDϱ1,ϱ2;φa+(φ(τ)−φ(a))κ−1=0. |
Lemma 2.6 ([23]). If g∈Cn(℧,R), n−1<ϱ1<n and ϱ2∈(0,1), we have
1) Iϱ1;φa+ HDϱ1,ϱ2;φa+ g(τ)=g(τ)−n∑k=1(φ(τ)−φ(a))p−kΓ(p−k+1)(1φ′(τ)ddτ)n−kI(1−ϱ2)(n−ϱ1);φa+g(a).
2) HDϱ1,ϱ2;φa+ Iϱ1;φa+g(τ)=g(τ).
In regard to the problem (1.3), the next lemma is needed which was demonstrated in [47].
Lemma 2.7 ([47]). Let F∈C and
Ω=(φ(b)−φ(a))p−1Γ(p)−m∑i=1δiΓ(p+λi)(φ(θi)−φ(a))p+λi−1≠0, | (2.1) |
then, the solution of nonlocal BVP
{HDϱ1,ϱ2;φa+ ϕ(τ)=F(τ), τ∈(a,b),ϕ(a)=0,ϕ(b)=m∑i=1δiIλi;φa+ϕ(θi), | (2.2) |
is obtained as
ϕ(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiIϱ1+λi;φa+F(θi)−Iϱ1;φa+F(b))+Iϱ1;φa+F(τ). | (2.3) |
We requisition some basics related to the theory of set-valued maps. To this purpose, consider the Banach space (E,‖.‖) and the multi-valued map M:E→P(E), (i) is closed (convex) valued if M(ϕ) is closed (convex) ∀ϕ∈E; (ii) is bounded if M(D)=∪ϕ∈DM(ϕ) is bounded in E for all bounded set D of E, i.e., supϕ∈D{sup{|α|:α∈M(ϕ)}}<∞; (iii) is measurable if ∀ α∈R, the function τ→d(α,M(τ))=inf{|α−λ|:λ∈M(τ)} is measurable.
For other definitions such as completely continuous, upper semi-continuity (u.s.c.), we indicate to [49]. Further, the set of selections of F is given by
RF,α={ϰ∈L1(℧,R):ϰ(τ)∈F(τ,α) for a.e. τ∈℧}. |
Consider
Pσ(E)={M∈P(E):M≠∅ and has property σ}, |
where Pb, Pcl, Pcp, and Pc are the categories of all closed, bounded, compact and convex subsets of E, respectively.
Definition 2.8. Set-valued map F:℧×R→P(R) is a Carathéodory if τ→F(τ,ϕ) is measurable for any ϕ∈R, and ϕ→F(τ,ϕ) is u.s.c., for (a.e.) all τ∈℧.
Besides, a set-valued map F is called L1-Carathéodory if ∀ w>0, there exists Φ∈L1(℧,R+) such that
‖F(τ,ϕ)‖=sup{|ϰ|:ϰ∈F(τ,ϕ)}≤Φ(τ), |
for a.e. τ∈℧, and for all ‖ϕ‖≤w.
Now, we offer the next essential lemmas:
Lemma 2.9 ([7]). Let Gr(M)={(ϕ,α)∈E×Z,α∈M(ϕ)} be a graph of M. If M:E→Pcl(Z) is u.s.c., then Gr(M) is a closed subset of E×Z. Conversely, if M is completely continuous and has a closed graph, then it is u.s.c.
Lemma 2.10 ([50]). Let E be a separable Banach space. F:f×R→Pcp,c(E) be an L1-Carath éodory set-valued map, and T:L1(℧,E)→C(℧,E) be a linear continuous mapping. Then the operator
T∘RF:C(℧,E)→Pcp,c(C(℧,E)),ϕ→(T∘RF)(ϕ)=T(RF,ϕ), |
is a closed graph operator in C(℧,E)×C(℧,E).
Definition 3.1. A function ϕ∈C is a solution of (1.3), if there is ϰ∈L1(℧,R) with ϰ(τ)∈F(τ,ϕ) ∀τ∈℧ fulfilling the nonlocal IBC
ϕ(a)=0, ϕ(b)=m∑i=1δiIλi;Υa+ϕ(θi), |
and
ϕ(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiIϱ1+λi;φa+ϰ(θi)−Iϱ1;φa+ϰ(b))+Iϱ1;φa+ϰ(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ)+1Γ(α)∫τaφ′(ζ)(φ(τ)−φ(ζ))ϱ1−1ϰ(ζ)dζ. |
The first consequence transacts with the convex valued F depending on Leray-Schauder-type for set-valued maps [51].
Theorem 3.2. Let
η=m∑i=1|δi|(φ(b)−φ(a))ϱ1+λi+p−1|Ω|Γ(p)Γ(ϱ1+λi+1)+(φ(b)−φ(a))p+ϱ1−1|Ω|Γ(p)Γ(ϱ1+1)+(φ(b)−φ(a))ϱ1Γ(ϱ1+1), | (3.1) |
and suppose that
(As1) F:℧×R→Pcp,c(R) is a L1-Carathéodory set-valued map.
(As2) ∃ ˜Z1∈C(℧,[0,∞)) and a nondecreasing ˜Z2∈C([0,∞),[0,∞)) with
‖F(τ,ϕ)‖P=sup{|α|:α∈F(τ,ϕ)}≤˜Z1(τ)˜Z2(‖ϕ‖),∀(τ,ϕ)∈℧×R. |
(As3) There is a constant K>0 such that
Kη‖˜Z1‖˜Z2(K)>1. | (3.2) |
Then the problem (1.3) has at least one solution on ℧.
Proof. At first, to convert (1.3) into a FP problem, we define the operator ˜B:C→P(C) by
˜B(ϕ)={˜p∈C:˜p(τ)={(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(τ)−φ(ζ))ϱ1−1ϰ(ζ)dζ}, | (3.3) |
for ϰ∈RF,ϕ. Clearly, the solution of (1.3) is the FP of the operator ˜B. Proof cases will be given in a number of steps as:
Case 1. ˜B(ϕ) is convex for any ϕ∈C.
Let ˜p1, ˜p2∈˜B(ϕ). Then there exist ϰ1, ϰ2∈RF,ϕ such that for each τ∈℧
˜pj(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰj(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰj(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(τ)−φ(ζ))ϱ1−1ϰj(ζ)dζ, j=1,2. |
Let η∈[0,1]. Then for each τ∈℧
[η˜p1+(1−η)˜p2](τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1[ηϰ1(ζ)+(1−η)ϰ2(ζ)]dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1[ηϰ1(ζ)+(1−η)ϰ2(ζ)]dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(τ)−φ(ζ))ϱ1−1[ηϰ1(ζ)+(1−η)ϰ2(ζ)]dζ. |
As F possesses convex values, RF,ϕ is convex and [ηϰ1(ζ)+(1−η)ϰ2(ζ)]∈RF,ϕ. Thus, η˜p1+(1−η)˜p2∈˜B(ϕ).
Case 2. The image of a bounded set under ˜B is bounded in C.
For r∈R+, let Dr={ϕ∈C:‖ϕ‖≤r} be a bounded set in C. Then for each ˜p∈˜B(ϕ) and ϕ∈Dr, there exists ϰ∈RF,ϕ such that
˜p(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ. |
From the hypothesis (As2) and ∀τ∈℧, we get
|˜p(τ)|≤(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1|ϰ(ζ)|dζ+1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1|ϰ(ζ)|dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1|ϰ(ζ)|dζ≤(φ(τ)−φ(a))p−1‖˜Z1‖˜Z2(r)|Ω|Γ(p)(m∑i=1|δi|Γ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1dζ+1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1dζ)+‖˜Z1‖˜Z2(r)Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1dζ≤‖˜Z1‖˜Z2(r)(m∑i=1|δi|(φ(b)−φ(a))ϱ1+λi+p−1|Ω|Γ(p)Γ(ϱ1+λi+1)+(φ(b)−φ(a))p+ϱ1−1|Ω|Γ(p)Γ(ϱ1+1)+(φ(b)−φ(a))ϱ1Γ(ϱ1+1)). |
Thus
‖˜p‖≤η‖˜Z1‖˜Z2(r). |
Case 3. We prove that ˜B(Dr) is equicontinuous.
Let ϕ∈Dr and ˜p∈˜B(ϕ). Then there is a function ϰ∈RF,ϕ such that
˜p(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ, τ∈℧. |
Let τ1,τ2∈℧, τ1<τ2. Then
|˜p(τ2)−˜p(τ1)|≤(φ(τ2)−φ(a))p−1−(φ(τ1)−φ(a))p−1|Ω|Γ(p)(m∑i=1|δi|Γ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1|ϰ(ζ)|dζ+1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1|ϰ(ζ)|dζ)+1Γ(ϱ1)∫τ1aφ′(ζ)((φ(τ2)−φ(ζ))ϱ1−1−(φ(τ1)−φ(ζ))ϱ1−1)|ϰ(ζ)|dζ+1Γ(ϱ1)∫τ2τ1φ′(s)(φ(τ2)−φ(ζ))ϱ1−1|ϰ(ζ)|dζ≤((φ(τ2)−φ(a))p−1−(φ(τ1)−φ(a))p−1)‖˜Z1‖˜Z2(r)|Ω|Γ(p)(m∑i=1|δi|Γ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1dζ+1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1dζ)+‖˜Z1‖˜Z2(r)Γ(ϱ1+1)(((φ(τ2)−φ(a))ϱ1−(φ(τ1)−φ(a))ϱ1)). |
As τ1→τ2, we obtain
|˜p(τ2)−˜p(τ1)|→0. |
So, ˜B(Dr) is equicontinuous. Based on Arzela-Ascoli theorem and above cases (2−3), we conclude that ˜B is completely continuous.
Case 4. The graph of ˜B is closed.
Let ϕn→ϕ∗, ˜pn∈˜B(ϕn) and ˜pn converges to ˜p∗. We prove that ˜p∗∈˜B(ϕ∗). Since ˜pn∈˜B(ϕn), there exists ϰn∈RF,ϕn such that
˜pn(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰn(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰn(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰn(ζ)dζ, τ∈℧. |
Thus, we need to show that there exists ϰ∗∈RF,ϕ∗ such that, for each τ∈℧,
˜p∗(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ∗(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ∗(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ∗(ζ)dζ. |
Define T:L1(℧,R)→C(℧,R) such that be continuous linear operator by
ϰ→T(ϰ)(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ, τ∈℧. |
Observe that
‖˜pn−˜p∗‖=‖(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1(ϰn(ζ)−ϰ∗(ζ))dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1(ϰn(ζ)−ϰ∗(ζ))dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1(ϰn(ζ)−ϰ∗(ζ))dζ→0‖, |
when n→∞. So in light of Lemma (2.10) that T∘RF,ϕ is a closed graph operator. Besides, we have
˜pn∈T(RF,ϕn). |
Since ϕn→ϕ∗, Lemma (2.10) gives
˜p∗(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ∗(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ∗(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ∗(ζ)dζ. |
for some ϰ∗∈RF,ϕ∗.
Case 5. There exists an open set N⊆C with ϕ∉δ˜B(ϕ) for every δ∈(0,1) and ∀ϕ∈∂N.
Let δ∈(0,1) and ϕ∈δ˜B(ϕ). Then there exists ϰ∈RF,ϕ such that
|ϕ(τ)|=|δ(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ)+δΓ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ|≤η‖˜Z1‖˜Z2(‖ϕ‖). |
Thus, we have
|ϕ(τ)|≤η‖˜Z1‖˜Z2(‖ϕ‖), ∀τ∈℧. |
Hence, we obtain
‖ϕ‖η‖˜Z1‖˜Z2(‖ϕ‖)≤1. |
From (As3), there is a positive constant K such that ‖ϕ‖≠K. We define the set N by
N={ϕ∈C:‖ϕ‖<K}. |
From previous cases, ˜B:¯N→P(C) is completely continuous and u.s.c. Depending on the choice of N, there is no ϕ ∈∂N such that ϕ∈δ˜B(ϕ) for some δ∈(0,1). Therefore, We can infer that problem (1.3) possesses at least one solution ϕ∈¯N according to Leray-Schauder theorem for multi-valued maps.
In this part, we give another existence criterion for φ-Hilfer FDI (1.3) according to new assumptions. In what follows, we prove the existence result when F has a non convex-valued using Covitz and Nadler theorem [52].
Let (E,d) be a metric space. Consider Hd:P(E)×P(E)→R+∪{∞} defined by
Hd(˜M,˜N)=max{sup˜m∈˜Md(˜m,˜N),sup˜n∈˜Nd(˜M,˜n)}, |
where d(˜M,˜n)=inf˜m∈˜Md(˜m,˜n) and d(˜m,˜N)=inf˜n∈˜Nd(˜m,˜n). Then (Pb,cl(E),Hd) is a metric space (see [53]).
Definition 3.3. A set-valued operator ˜B:E→Pcl(E) is κ-Lipschitz iff ∃ κ>0 such that
Hd(˜B(ϕ),˜B(α))≤κd(ϕ,α) for any ϕ, α∈E. |
Particularly, if κ<1, then ˜B is a contraction.
Theorem 3.4. Suppose that
(As4) F:℧×R→Pcp(R) is such that F(.,ϕ):f→Pcp(R) is measurable for each ϕ∈R.
(As5) Hd(F(τ,ϕ),F(τ,¯ϕ))≤˜r(τ)|ϕ−¯ϕ| for (a.e.) all τ∈℧ and ϕ,¯ϕ∈R with ˜r∈C(℧,R+) and d(0,F(τ,0))≤˜r(τ) for (a.e.) all τ∈℧.
Then the problem (1.3) has at least one solution on ℧ if
η‖˜r‖<1, |
where η is defined in (3.1).
Proof. In view of Theorem III.6 in [8] and the assumption (As4), F has a measurable selection ϰ:℧→R, ϰ∈L1(℧,R), as well as F is integrably bounded. Thus, RF,ϕ ≠∅. Now, we prove that ˜B:C→P(C) defined in (3.3) satisfies the assumptions of FPT of Nadler and Covitz. To show that ˜B(ϕ) is closed for any ϕ∈C. Let {un}n≥0∈˜B(ϕ) be such that un→u (n→∞) in C. Then u∈C and there is ϰn∈RF,ϕn such that
un(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰn(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰn(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰn(ζ)dζ, ∀τ∈℧. |
As F possesses compact values, so there is a subsequence ϰn→ϰ in L1(℧,R). Consequently. ϰ∈RF,ϕ and we get
un(τ)→u(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ(ζ)dζ, ∀τ∈℧. |
Hence u∈˜B(ϕ).
Next, we show that there is a ϑ∈(0,1), (ϑ=η‖˜r‖) such that
Hd(˜B(ϕ),˜B(¯ϕ))≤ϑ‖ϕ−¯ϕ‖ for each ϕ, ¯ϕ∈C. |
Let ϕ, ¯ϕ∈C and ˜p1∈˜B(ϕ). Then there exists ϰ1(τ)∈F(τ,ϕ(τ)) such that, for each τ∈℧
˜p1(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ1(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ1(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ1(ζ)dζ. |
By (As5), we have
Hd(F(τ,ϕ),F(τ,¯ϕ))≤˜r(τ)|ϕ(τ)−¯ϕ(τ)|. |
Thus, there exists ˜w(τ)∈F(τ,¯ϕ) such that
|ϰ1(τ)−˜w|≤˜r(τ)|ϕ(τ)−¯ϕ(τ)|, τ∈℧. |
Constructing a set-valued map E:℧→P(R) as
E(τ)={˜w∈R:|ϰ1(τ)−˜w|≤˜r(τ)|ϕ(τ)−¯ϕ(τ)|}. |
We can infer that the set-valued map E(τ)∩F(τ,¯ϕ) is measurable, because ϰ1 and Δ=˜r|ϕ−¯ϕ| are both measurable. Now, we choose ϰ2(τ)∈F(τ,¯ϕ) with
|ϰ1(τ)−ϰ2(τ)|≤˜r(τ)|ϕ(τ)−¯ϕ(τ)|, ∀τ∈℧. |
Define
˜p2(τ)=(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1ϰ2(ζ)dζ−1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ2(ζ)dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1ϰ2(ζ)dζ, ∀τ∈℧. |
As a result, we get
|˜p1(τ)−˜p2(τ)|≤(φ(τ)−φ(a))p−1ΩΓ(p)(m∑i=1δiΓ(ϱ1+λi)∫θiaφ′(ζ)(φ(θi)−φ(ζ))ϱ1+λi−1|ϰ1(ζ)−ϰ2(ζ)|dζ+1Γ(ϱ1)∫baφ′(ζ)(φ(b)−φ(ζ))ϱ1−1|ϰ1(ζ)−ϰ2(ζ)|dζ)+1Γ(ϱ1)∫τaφ′(ζ)(φ(b)−φ(ζ))ϱ1−1|ϰ1(ζ)−ϰ2(ζ)|dζ≤‖m‖‖ϕ−¯ϕ‖m∑i=1|δi|(φ(b)−φ(a))ϱ1+λi+p−1|Ω|Γ(p)Γ(ϱ1+λi+1)+(φ(b)−φ(a))p+ϱ1−1|Ω|Γ(p)Γ(ϱ1+1)+(φ(b)−φ(a))ϱ1Γ(ϱ1+1). |
Hence
‖˜p1−˜p2‖≤η‖˜r‖‖ϕ−¯ϕ‖. |
Analogously, interchanging the roles of ϕ and ¯ϕ, we get
Hd(˜B(ϕ),˜B(¯ϕ))≤η‖˜r‖‖ϕ−¯ϕ‖. |
As ˜B is a contraction, we conclude that it has a FP ϕ which is a solution of (1.3) according to the Covitz and Nadler theorem.
In this section, we give some special cases of FDIs to illustrate the obtained outcomes.
Consider the FDIs of the following type
{HDϱ1,ϱ2;φa+ϕ(τ)∈F(τ,ϕ), τ∈(a,b),ϕ(a)=0, ϕ(b)=m∑i=1δiIλi,φa+ϕ(θi). | (4.1) |
The following instances are special cases of FDIs defined by (4.1).
Example 4.1. Using the following data φ(τ)=logτ, ϱ2→0, a=1, b=e, ϱ1=32, δ1=12, δ2=110, λ1=14, λ2=52, θ1=32, θ2=2 in (4.1). Thus, the problem (4.1) convert to
{HD32,0;logτ1+ϕ(τ)∈F(τ,ϕ), τ∈(1,e),ϕ(1)=0, ϕ(e)=12I14,logτ1+ϕ(32)+110I52,logτ1+ϕ(2), | (4.2) |
with p=32. Let F:[1,e]×R→P(R) defined by
ϕ→F(τ,ϕ)=[1(τ3+6exp(τ2))ϕ23(ϕ2+2),1√τ+8|ϕ||ϕ|+1]. | (4.3) |
From above data we get Ω=0.84640≠0. Clearly F fulfills (As1) and
‖F(τ,ϕ)‖P=sup{|α|:α∈F(τ,ϕ)}≤1√τ+8=˜Z1(τ)˜Z2(‖ϕ‖), |
which yields ‖˜Z1‖=13 and ˜Z2(‖ϕ‖)=1. Therefore, the condition (As2) is fulfilled, and by (As3), it found that K>0.72503.
Hence all suppositions of Theorem 3.2 hold, and so there is at least one solution of the problem (4.2) on [1,e].
Example 4.2. Using the following data φ(τ)=τ, ϱ2→0, a=0, b=1, ϱ1=54, δ1=3, δ2=5, λ1=14, λ2=12, θ1=14, θ2=12 in (4.1). Thus, the problem (4.1) convert to
{HD54,0;τ0+ϕ(τ)∈F(τ,ϕ), τ∈(0,1),ϕ(0)=0, ϕ(1)=3I14,τ0+ϕ(14)+5I12,τ0+ϕ(12), | (4.4) |
with p=54. Let F:[0,1]×R→P(R) defined by
ϕ→F(τ,ϕ)=[exp(−ϕ4)+τ+4,|ϕ||ϕ|+1+τ+2]. | (4.5) |
From above data we get Ω=−3.8241≠0. Clearly F fulfills (As1) and
‖F(τ,ϕ)‖P=sup{|α|:α∈F(τ,ϕ)}≤6=˜Z1(τ)˜Z2(‖ϕ‖), |
where ‖˜Z1‖=1 and ˜Z2(‖ϕ‖)=6. Therefore, the condition (As2) is valid, and by (As3), it follows that K>16.111.
Hence all suppositions of Theorem 3.2 hold, and so there is at least one solution of (4.4) on [0,1].
Example 4.3. Using the following data φ(τ)=τ, ϱ2→12, a=0, b=1, ϱ1=74, δ1=3, δ2=5, λ1=14, λ2=12, θ1=14, θ2=12 in (4.1). Thus, the problem (4.1) convert to
{HD74,12;τ0+ϕ(τ)∈F(τ,ϕ), τ∈(0,1),ϕ(0)=0, ϕ(1)=3I14,τ0+ϕ(14)+5I12,τ0+ϕ(12), | (4.6) |
with p=158. Let F:[0,1]×R→P(R) given by
ϕ→F(τ,ϕ)=[0,2sin(ϕ)(τ2+16)+120]. | (4.7) |
From above data we get Ω=−1.1237≠0. Obviously Hd(F(τ,ϕ),F(τ,¯ϕ))≤˜r(τ)|ϕ−¯ϕ|, where ˜r(τ)=2(τ2+16) and d(0,F(τ,0))=120≤˜r(τ) for (a.e.) all τ∈[0,1]. Additionally, we obtain ‖˜r‖=18 which leads to η‖˜r‖≈0.55<1. Accordingly, all hypotheses of Theorem (3.4) are satisfied, and so there exists at least one solution of the problem (4.6) on [0,1].
In this article, we have considered a class of BVP's for φ -Hilfer-type FDIs subjected to nonlocal IBC. The existence results have been proved by considering the kinds when the set-valued map has convex or nonconvex values. In the case of a convex set-valued map, we have applied the Leray-Schauder FPT, whereas the Nadler's and Covitz's FPT concern set-valued contractions are used in the case of a nonconvex set-valued map. The obtained outcomes are well explained through many relevant illustrative examples. We have settled that current results are new in the frame of φ-Hilfer FDIs and it covers many findings in the existing literature as a special case as shown in the Remark 1.1.
In future studies. We will try to expand the problem presented in this article to a general structure using the Mittag-Leffler power law [21] and fractal fractional operators [54].
The authors B. Abdalla and T. Abdeljawad would like to thank Prince Sultan University for paying the APC and for the support through the TAS research lab.
The authors declare that they have no conflict of interest.
[1] | K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-verlag, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-14574-2. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006. doi: 10.1016/S0304-0208(06)80001-0. |
[3] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge, UK: Cambridge Scientific Publishers, 2009. |
[4] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[5] |
D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. doi: 10.1186/s13661-020-01361-0. doi: 10.1186/s13661-020-01361-0
![]() |
[6] |
L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413–3442. doi: 10.1155/S0161171203301486. doi: 10.1155/S0161171203301486
![]() |
[7] | K. Deimling, Set-valued differential equations, De Gruyter, Berlin, 1992. |
[8] | C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Berlin/Heidelberg: Springer, 1977. |
[9] | L. Górniewicz, Topological fixed point theory of multivalued mappings, Dordrecht: Springer, 1999. doi: 10.1007/978-94-015-9195-9. |
[10] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. doi: 10.1142/3779. |
[11] |
H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668. doi: 10.1016/j.chaos.2021.110668. doi: 10.1016/j.chaos.2021.110668
![]() |
[12] | V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, New York: Springer, 2011. |
[13] |
S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. doi: 10.3906/mat-2010-70. doi: 10.3906/mat-2010-70
![]() |
[14] | Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Amsterdam: Elsevier, 2015. doi: 10.1016/B978-0-12-804277-9.50006-7. |
[15] |
M. Caputo, Linear model of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x. doi: 10.1111/j.1365-246X.1967.tb02303.x
![]() |
[16] | J. Hadamard, Essai sur létude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8 (1892), 101–186. |
[17] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[18] |
F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142. doi: 10.1186/1687-1847-2012-142
![]() |
[19] | R. Almeida, A Gronwall inequality for a general Caputo fractional operator, arXiv. Available from: https://arXiv.org/abs/1705.10079. |
[20] |
M. R. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201. doi: 10.12785/pfda/010201
![]() |
[21] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
![]() |
[22] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006. doi: 10.1016/j.cnsns.2016.09.006
![]() |
[23] |
J. V. C. Sousa, E. C. D. Oliveira, On the φ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
![]() |
[24] |
N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equations, 246 (2009), 3834–3863. doi: 10.1016/j.jde.2009.03.004. doi: 10.1016/j.jde.2009.03.004
![]() |
[25] |
M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. doi: 10.1016/j.heliyon.2020.e05109. doi: 10.1016/j.heliyon.2020.e05109
![]() |
[26] |
M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Solitons Fractals, 141 (2020), 110341. doi: 10.1016/j.chaos.2020.110341. doi: 10.1016/j.chaos.2020.110341
![]() |
[27] |
M. S. Abdo, A. G. Ibrahim, S. K. Panchal, State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis, 54 (2018), 139–159. doi: 10.17114/j.aua.2018.54.10. doi: 10.17114/j.aua.2018.54.10
![]() |
[28] |
M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Noncompact perturbation of nonconvex noncompact sweeping process with delay, Comment. Math. Univ. Carol., 11 (2020), 1–22. doi: 10.14712/1213-7243.2020.014. doi: 10.14712/1213-7243.2020.014
![]() |
[29] |
M. Benchohra, A. Ouahab, Initial boundary value problems for second order impulsive functional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 2003 (2003), 1–10. doi: 10.14232/ejqtde.2003.1.3. doi: 10.14232/ejqtde.2003.1.3
![]() |
[30] | A. Lachouri, A. Ardjouni, A. Djoudi, Existence results for nonlinear sequential Caputo and Caputo-Hadamard fractional differential inclusions with three-point boundary conditions, Math. Eng. Sci. Aerospace, 12 (2021), 163–179. |
[31] | A. Lachouri, A. Ardjouni, A. Djoudi, Investigation of the existence and uniqueness of solutions for higher order fractional differential inclusions and equations with integral boundary conditions. J. Interdiscip. Math., 2021 (2021), 1–19. doi: 10.1080/09720529.2021.1877901. |
[32] |
A. Lachouri, M. S. Abdo, A. Ardjouni, B. Abdalla, T. Abdeljawad, Hilfer fractional differential inclusions with Erdé lyi-Kober fractional integral boundary condition, Adv. Differ. Equ., 2021 (2021), 244. doi: 10.1186/s13662-021-03397-7. doi: 10.1186/s13662-021-03397-7
![]() |
[33] |
J. Wang, A. G. Ibrahim, D. O'Regan, Y. Zhou, Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29 (2018), 1362–1392. doi: 10.1016/j.indag.2018.07.002. doi: 10.1016/j.indag.2018.07.002
![]() |
[34] |
M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving φ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. doi: 10.4208/aamm.OA-2018-0143. doi: 10.4208/aamm.OA-2018-0143
![]() |
[35] |
A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 101. doi: 10.1186/s13662-019-2047-y. doi: 10.1186/s13662-019-2047-y
![]() |
[36] |
A. Ardjouni, A. Lachouri, A. Djoudi, Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Open J. Math. Anal., 3 (2019), 106–111. doi: 10.30538/psrp-oma2019.0044. doi: 10.30538/psrp-oma2019.0044
![]() |
[37] |
D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. doi: 10.1016/j.aej.2020.04.053. doi: 10.1016/j.aej.2020.04.053
![]() |
[38] |
F. Jarad, E. U˜gurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z. doi: 10.1186/s13662-017-1306-z
![]() |
[39] |
A. Lachouri, A. Ardjouni, A Djoudi, Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations, Math. Morav., 24 (2020), 109–122. doi: 10.5937/MatMor2001109L. doi: 10.5937/MatMor2001109L
![]() |
[40] |
A. Lachouri, A. Ardjouni, A. Djoudi, Positive solutions of a fractional integro-differential equation with integral boundary conditions, Commun. Optim. Theory, 2020 (2020), 1–9. doi: 10.23952/cot.2020.1. doi: 10.23952/cot.2020.1
![]() |
[41] |
A. Lachouri, A. Ardjouni, A. Djoudi, Existence and uniqueness results for nonlinear implicit Riemann-Liouville fractional differential equations with nonlocal conditions, Filomat, 34 (2020), 4881–4891. doi: 10.2298/FIL2014881L. doi: 10.2298/FIL2014881L
![]() |
[42] |
S. Rezapour, A. Imran, A. Hussain, F. Martínez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. doi: 10.3390/sym13030469. doi: 10.3390/sym13030469
![]() |
[43] |
R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. doi: 10.1016/j.aej.2020.01.055. doi: 10.1016/j.aej.2020.01.055
![]() |
[44] |
R. Subashini, C. Ravichandran, K. Jothimani, H. M. Baskonus, Existence results of Hilfer integro-differential equations with fractional order, Discrete Cont. Dyn. Sys. S., 13 (2020), 911–923. doi: 10.3934/dcdss.2020053. doi: 10.3934/dcdss.2020053
![]() |
[45] |
K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fractals, 146 (2021), 110915. doi: 10.1016/j.chaos.2021.110915. doi: 10.1016/j.chaos.2021.110915
![]() |
[46] |
S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. doi: 10.4134/BKMS.b170887. doi: 10.4134/BKMS.b170887
![]() |
[47] |
D. A. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Meth. Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521. doi: 10.1002/mma.6521
![]() |
[48] |
A. Wongcharoen, S. K. Ntouyas, J. Tariboon, Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions, Mathematics, 8 (2020), 1905. doi: 10.3390/math8111905. doi: 10.3390/math8111905
![]() |
[49] |
M. Aitalioubrahim, S. Sajid, Higher-order boundary value problems for Caratheodory differential inclusions, Miskolc Math. Notes, 9 (2008), 7–15. doi: 10.18514/MMN.2008.180. doi: 10.18514/MMN.2008.180
![]() |
[50] | A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys., 13 (1965), 781–786. |
[51] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. doi: 10.1007/978-0-387-21593-8. |
[52] |
H. Covitz, S. B. Nadler Jr, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. doi: 10.1007/BF02771543. doi: 10.1007/BF02771543
![]() |
[53] | M. Kisielewicz, Differential inclusions and optimal control, Kluwer, Dordrecht, The Netherlands, 1991. |
[54] |
A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
![]() |
1. | Hamid Lmou, Khalid Hilal, Ahmed Kajouni, On a class of fractional Langevin inclusion with multi-point boundary conditions, 2022, 41, 2175-1188, 1, 10.5269/bspm.62725 | |
2. | Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Kamal Shah, Thabet Abdeljawad, Investigation of fractional order inclusion problem with Mittag-Leffler type derivative, 2023, 14, 1662-9981, 10.1007/s11868-023-00537-3 | |
3. | Lihong Zhang, Xuehui Liu, Guotao Wang, Study of (k,Θ)-Hilfer fractional differential and inclusion systems on the glucose graph, 2024, 10, 24058440, e31285, 10.1016/j.heliyon.2024.e31285 |