In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the $ \varphi $-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a $ \varphi $-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.
Citation: Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad. On a class of differential inclusions in the frame of generalized Hilfer fractional derivative[J]. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the $ \varphi $-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a $ \varphi $-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.
[1] | K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-verlag, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-14574-2. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006. doi: 10.1016/S0304-0208(06)80001-0. |
[3] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge, UK: Cambridge Scientific Publishers, 2009. |
[4] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[5] | D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. doi: 10.1186/s13661-020-01361-0. doi: 10.1186/s13661-020-01361-0 |
[6] | L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413–3442. doi: 10.1155/S0161171203301486. doi: 10.1155/S0161171203301486 |
[7] | K. Deimling, Set-valued differential equations, De Gruyter, Berlin, 1992. |
[8] | C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Berlin/Heidelberg: Springer, 1977. |
[9] | L. Górniewicz, Topological fixed point theory of multivalued mappings, Dordrecht: Springer, 1999. doi: 10.1007/978-94-015-9195-9. |
[10] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. doi: 10.1142/3779. |
[11] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668. doi: 10.1016/j.chaos.2021.110668. doi: 10.1016/j.chaos.2021.110668 |
[12] | V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, New York: Springer, 2011. |
[13] | S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. doi: 10.3906/mat-2010-70. doi: 10.3906/mat-2010-70 |
[14] | Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Amsterdam: Elsevier, 2015. doi: 10.1016/B978-0-12-804277-9.50006-7. |
[15] | M. Caputo, Linear model of dissipation whose $Q$ is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[16] | J. Hadamard, Essai sur létude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8 (1892), 101–186. |
[17] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[18] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142. doi: 10.1186/1687-1847-2012-142 |
[19] | R. Almeida, A Gronwall inequality for a general Caputo fractional operator, arXiv. Available from: https://arXiv.org/abs/1705.10079. |
[20] | M. R. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201. doi: 10.12785/pfda/010201 |
[21] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A |
[22] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006. doi: 10.1016/j.cnsns.2016.09.006 |
[23] | J. V. C. Sousa, E. C. D. Oliveira, On the $\varphi $-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005 |
[24] | N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equations, 246 (2009), 3834–3863. doi: 10.1016/j.jde.2009.03.004. doi: 10.1016/j.jde.2009.03.004 |
[25] | M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. doi: 10.1016/j.heliyon.2020.e05109. doi: 10.1016/j.heliyon.2020.e05109 |
[26] | M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Solitons Fractals, 141 (2020), 110341. doi: 10.1016/j.chaos.2020.110341. doi: 10.1016/j.chaos.2020.110341 |
[27] | M. S. Abdo, A. G. Ibrahim, S. K. Panchal, State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis, 54 (2018), 139–159. doi: 10.17114/j.aua.2018.54.10. doi: 10.17114/j.aua.2018.54.10 |
[28] | M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Noncompact perturbation of nonconvex noncompact sweeping process with delay, Comment. Math. Univ. Carol., 11 (2020), 1–22. doi: 10.14712/1213-7243.2020.014. doi: 10.14712/1213-7243.2020.014 |
[29] | M. Benchohra, A. Ouahab, Initial boundary value problems for second order impulsive functional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 2003 (2003), 1–10. doi: 10.14232/ejqtde.2003.1.3. doi: 10.14232/ejqtde.2003.1.3 |
[30] | A. Lachouri, A. Ardjouni, A. Djoudi, Existence results for nonlinear sequential Caputo and Caputo-Hadamard fractional differential inclusions with three-point boundary conditions, Math. Eng. Sci. Aerospace, 12 (2021), 163–179. |
[31] | A. Lachouri, A. Ardjouni, A. Djoudi, Investigation of the existence and uniqueness of solutions for higher order fractional differential inclusions and equations with integral boundary conditions. J. Interdiscip. Math., 2021 (2021), 1–19. doi: 10.1080/09720529.2021.1877901. |
[32] | A. Lachouri, M. S. Abdo, A. Ardjouni, B. Abdalla, T. Abdeljawad, Hilfer fractional differential inclusions with Erdé lyi-Kober fractional integral boundary condition, Adv. Differ. Equ., 2021 (2021), 244. doi: 10.1186/s13662-021-03397-7. doi: 10.1186/s13662-021-03397-7 |
[33] | J. Wang, A. G. Ibrahim, D. O'Regan, Y. Zhou, Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29 (2018), 1362–1392. doi: 10.1016/j.indag.2018.07.002. doi: 10.1016/j.indag.2018.07.002 |
[34] | M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving $\varphi $-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. doi: 10.4208/aamm.OA-2018-0143. doi: 10.4208/aamm.OA-2018-0143 |
[35] | A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 101. doi: 10.1186/s13662-019-2047-y. doi: 10.1186/s13662-019-2047-y |
[36] | A. Ardjouni, A. Lachouri, A. Djoudi, Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Open J. Math. Anal., 3 (2019), 106–111. doi: 10.30538/psrp-oma2019.0044. doi: 10.30538/psrp-oma2019.0044 |
[37] | D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. doi: 10.1016/j.aej.2020.04.053. doi: 10.1016/j.aej.2020.04.053 |
[38] | F. Jarad, E. U$\rm{\tilde{g}}$urlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z. doi: 10.1186/s13662-017-1306-z |
[39] | A. Lachouri, A. Ardjouni, A Djoudi, Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations, Math. Morav., 24 (2020), 109–122. doi: 10.5937/MatMor2001109L. doi: 10.5937/MatMor2001109L |
[40] | A. Lachouri, A. Ardjouni, A. Djoudi, Positive solutions of a fractional integro-differential equation with integral boundary conditions, Commun. Optim. Theory, 2020 (2020), 1–9. doi: 10.23952/cot.2020.1. doi: 10.23952/cot.2020.1 |
[41] | A. Lachouri, A. Ardjouni, A. Djoudi, Existence and uniqueness results for nonlinear implicit Riemann-Liouville fractional differential equations with nonlocal conditions, Filomat, 34 (2020), 4881–4891. doi: 10.2298/FIL2014881L. doi: 10.2298/FIL2014881L |
[42] | S. Rezapour, A. Imran, A. Hussain, F. Martínez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. doi: 10.3390/sym13030469. doi: 10.3390/sym13030469 |
[43] | R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. doi: 10.1016/j.aej.2020.01.055. doi: 10.1016/j.aej.2020.01.055 |
[44] | R. Subashini, C. Ravichandran, K. Jothimani, H. M. Baskonus, Existence results of Hilfer integro-differential equations with fractional order, Discrete Cont. Dyn. Sys. S., 13 (2020), 911–923. doi: 10.3934/dcdss.2020053. doi: 10.3934/dcdss.2020053 |
[45] | K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fractals, 146 (2021), 110915. doi: 10.1016/j.chaos.2021.110915. doi: 10.1016/j.chaos.2021.110915 |
[46] | S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. doi: 10.4134/BKMS.b170887. doi: 10.4134/BKMS.b170887 |
[47] | D. A. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Meth. Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521. doi: 10.1002/mma.6521 |
[48] | A. Wongcharoen, S. K. Ntouyas, J. Tariboon, Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions, Mathematics, 8 (2020), 1905. doi: 10.3390/math8111905. doi: 10.3390/math8111905 |
[49] | M. Aitalioubrahim, S. Sajid, Higher-order boundary value problems for Caratheodory differential inclusions, Miskolc Math. Notes, 9 (2008), 7–15. doi: 10.18514/MMN.2008.180. doi: 10.18514/MMN.2008.180 |
[50] | A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys., 13 (1965), 781–786. |
[51] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. doi: 10.1007/978-0-387-21593-8. |
[52] | H. Covitz, S. B. Nadler Jr, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. doi: 10.1007/BF02771543. doi: 10.1007/BF02771543 |
[53] | M. Kisielewicz, Differential inclusions and optimal control, Kluwer, Dordrecht, The Netherlands, 1991. |
[54] | A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027 |