Research article Special Issues

Dirichlet characters of the rational polynomials

  • Received: 27 July 2021 Accepted: 22 November 2021 Published: 02 December 2021
  • MSC : 11L05, 11L10

  • Denote by $ \chi $ a Dirichlet character modulo $ q\geq 3 $, and $ \overline{a} $ means $ a\cdot\overline{a} \equiv 1 \bmod q $. In this paper, we study Dirichlet characters of the rational polynomials in the form

    $ \sum\limits^{q}_{a = 1}'\chi(ma+\overline{a}), $

    where $ \sum\limits_{a = 1}^{q}' $ denotes the summation over all $ 1\le a\le q $ with $ (a, q) = 1 $. Relying on the properties of character sums and Gauss sums, we obtain W. P. Zhang and T. T. Wang's identity [6] under a more relaxed situation. We also derive some new identities for the fourth power mean of it by adding some new ingredients.

    Citation: Wenjia Guo, Xiaoge Liu, Tianping Zhang. Dirichlet characters of the rational polynomials[J]. AIMS Mathematics, 2022, 7(3): 3494-3508. doi: 10.3934/math.2022194

    Related Papers:

  • Denote by $ \chi $ a Dirichlet character modulo $ q\geq 3 $, and $ \overline{a} $ means $ a\cdot\overline{a} \equiv 1 \bmod q $. In this paper, we study Dirichlet characters of the rational polynomials in the form

    $ \sum\limits^{q}_{a = 1}'\chi(ma+\overline{a}), $

    where $ \sum\limits_{a = 1}^{q}' $ denotes the summation over all $ 1\le a\le q $ with $ (a, q) = 1 $. Relying on the properties of character sums and Gauss sums, we obtain W. P. Zhang and T. T. Wang's identity [6] under a more relaxed situation. We also derive some new identities for the fourth power mean of it by adding some new ingredients.



    加载中


    [1] G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttingen Nachr., 167 (1918), 21–29.
    [2] I. M. Vinogradov, On the distribution of residues and non-residues of powers, J. Phys. Math. Soc. Perm., 1 (1918), 94–96.
    [3] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. U.S.A., 34 (1948), 204–207. doi: 10.1073/pnas.34.5.204.
    [4] W. P. Zhang, Y. Yi, On Dirichlet characters of polynomials, Bull. Lond. Math. Soc., 34 (2002), 469–473. doi: 10.1112/S0024609302001030. doi: 10.1112/S0024609302001030
    [5] W. P. Zhang, W. L. Yao, A note on the Dirichlet characters of polynomials, Acta Arith., 115 (2004), 225–229. doi: 10.4064/aa115-3-3. doi: 10.4064/aa115-3-3
    [6] W. P. Zhang, T. T. Wang, A note on the Dirichlet characters of polynomials, Math. Slovaca, 64 (2014), 301–310. doi: 10.2478/s12175-014-0204-z. doi: 10.2478/s12175-014-0204-z
    [7] D. A. Burgess, Dirichlet characters and polynomials, Tr. Mat. Inst. Steklova, 132 (1973), 203–205.
    [8] E. A. Grechnikov, An estimate for the sum of Legendre symbols, Math. Notes, 88 (2010), 819–826. doi: 10.1134/S0001434610110222. doi: 10.1134/S0001434610110222
    [9] V. Pigno, C. Pinner, Binomial character sums modulo prime powers, J. Théor. Nombres Bordeaux, 28 (2016), 39–53. doi: 10.5802/jtnb.927. doi: 10.5802/jtnb.927
    [10] X. X. Lv, W. P. Zhang, A new hybrid power mean involving the generalized quadratic Gauss sums and sums analogous to Kloosterman sums, Lith. Math. J., 57 (2017), 359–366. doi: 10.1007/s10986-017-9366-z. doi: 10.1007/s10986-017-9366-z
    [11] J. F. Zhang, X. X. Lv, On the character sums of polynomials and L-functions, (Chinese), Acta Math. Sinica (Chin. Ser.), 62 (2019), 903–912.
    [12] X. X. Lv, W. P. Zhang, On the character sum of polynomials and the two-term exponential sums, Acta. Math. Sin.-English Ser., 36 (2020), 196–206. doi: 10.1007/s10114-020-9255-y. doi: 10.1007/s10114-020-9255-y
    [13] A. P. Mangerel, Short character sums and the Pólya-Vinogradov inequality, The Quarterly Journal of Mathematics, 71 (2020), 1281–1308. doi: 10.1093/qmath/haaa031. doi: 10.1093/qmath/haaa031
    [14] P. Xi, Moments of certain character sums that are unnamed, 2021, arXiv: 2105.15051.
    [15] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Scientifiques et Industrielles, 1948.
    [16] A. Weil, Variétés abéliennes et courbes algébriques, Actualités Scientifiques et Industrielles, 1948.
    [17] L. K. Hua, Introduction to number theory, (Chinese), Peking: Science Press, 1964.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1683) PDF downloads(123) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog