We consider the calculation problem of one kind hybrid power mean involving the character sums of polynomials and two-term exponential sums modulo $ p $, an odd prime, and use the analytic method and the properties of classical Gauss sums to give some identities and asymptotic formulas for them.
Citation: Wenpeng Zhang, Jiafan Zhang. The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $[J]. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
We consider the calculation problem of one kind hybrid power mean involving the character sums of polynomials and two-term exponential sums modulo $ p $, an odd prime, and use the analytic method and the properties of classical Gauss sums to give some identities and asymptotic formulas for them.
[1] | T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. |
[2] | C. D. Pan, C. B. Pan, Goldbach Conjecture, Science Press, Beijing, 1992. |
[3] | K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer-Verlag, New York, 1982. |
[4] | A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités math. sci., No. 1041 (Paris, 1945), deuxième partie, § IV. |
[5] | W. P. Zhang, Y. Yi, On Dirichlet characters of polynomials, Bull. London Math. Soc., 34 (2002), 469–473. doi: 10.1112/S0024609302001030 |
[6] | W. P. Zhang, W. L. Yao, A note on the Dirichlet characters of polynomials, Acta Arith., 115 (2004), 225–229. doi: 10.4064/aa115-3-3 |
[7] | D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc., 12 (1962), 179–192. |
[8] | D. A. Burgess, On Dirichlet characters of polynomials, Proc. London Math. Soc., 13 (1963), 537–548. |
[9] | A. Granville, K. Soundararajan, Large character sums: Pretentious characters and the P$\mathrm{\acute{o}}$lya-Vinogradov theorem, J. Amer. Math. Soc., 20 (2007), 357–384. |
[10] | J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524–1557. doi: 10.1137/110850414 |
[11] | W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. doi: 10.1016/j.jnt.2013.10.022 |
[12] | D. Han, A Hybrid mean value involving two-term exponential sums and polynomial character sums, Czech. Math. J., 64 (2014), 53–62. doi: 10.1007/s10587-014-0082-0 |
[13] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81. |
[14] | X. Y. Du, The hybrid power mean of two-term exponential sums and character sums, Acta Math. Sinica (Chinese Series), 59 (2016), 309–316. |
[15] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 60–66. |