Research article

New finite-time synchronization conditions of delayed multinonidentical coupled complex dynamical networks


  • Received: 26 October 2022 Revised: 11 November 2022 Accepted: 22 November 2022 Published: 01 December 2022
  • In this article, we mainly focus on the finite-time synchronization of delayed multinonidentical coupled complex dynamical networks. By applying the Zero-point theorem, novel differential inequalities, and designing three novel controllers, we obtain three new criteria to assure the finite-time synchronization between the drive system and the response system. The inequalities occurred in this paper are absolutely different from those in other papers. And the controllers provided here are fully novel. We also illustrate the theoretical results through some examples.

    Citation: Zhen Yang, Zhengqiu Zhang, Xiaoli Wang. New finite-time synchronization conditions of delayed multinonidentical coupled complex dynamical networks[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3047-3069. doi: 10.3934/mbe.2023144

    Related Papers:

    [1] Tariq Mahmood, Liaqat Ali, Muhammad Aslam, Ghulam Farid . On commutativity of quotient semirings through generalized derivations. AIMS Mathematics, 2023, 8(11): 25729-25739. doi: 10.3934/math.20231312
    [2] Liaqat Ali, Yaqoub Ahmed Khan, A. A. Mousa, S. Abdel-Khalek, Ghulam Farid . Some differential identities of MA-semirings with involution. AIMS Mathematics, 2021, 6(3): 2304-2314. doi: 10.3934/math.2021139
    [3] Saba Al-Kaseasbeh, Madeline Al Tahan, Bijan Davvaz, Mariam Hariri . Single valued neutrosophic (m,n)-ideals of ordered semirings. AIMS Mathematics, 2022, 7(1): 1211-1223. doi: 10.3934/math.2022071
    [4] Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee . On n-ary ring congruences of n-ary semirings. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019
    [5] Abdelghani Taouti, Waheed Ahmad Khan . Fuzzy subnear-semirings and fuzzy soft subnear-semirings. AIMS Mathematics, 2021, 6(3): 2268-2286. doi: 10.3934/math.2021137
    [6] Rukhshanda Anjum, Saad Ullah, Yu-Ming Chu, Mohammad Munir, Nasreen Kausar, Seifedine Kadry . Characterizations of ordered h-regular semirings by ordered h-ideals. AIMS Mathematics, 2020, 5(6): 5768-5790. doi: 10.3934/math.2020370
    [7] Gurninder S. Sandhu, Deepak Kumar . A note on derivations and Jordan ideals of prime rings. AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580
    [8] Gurninder S. Sandhu, Deepak Kumar . Correction: A note on derivations and Jordan ideals in prime rings. AIMS Mathematics, 2019, 4(3): 684-685. doi: 10.3934/math.2019.3.684
    [9] Faiza Shujat, Faarie Alharbi, Abu Zaid Ansari . Weak (p,q)-Jordan centralizer and derivation on rings and algebras. AIMS Mathematics, 2025, 10(4): 8322-8330. doi: 10.3934/math.2025383
    [10] Kaiqing Huang, Yizhi Chen, Miaomiao Ren . Additively orthodox semirings with special transversals. AIMS Mathematics, 2022, 7(3): 4153-4167. doi: 10.3934/math.2022230
  • In this article, we mainly focus on the finite-time synchronization of delayed multinonidentical coupled complex dynamical networks. By applying the Zero-point theorem, novel differential inequalities, and designing three novel controllers, we obtain three new criteria to assure the finite-time synchronization between the drive system and the response system. The inequalities occurred in this paper are absolutely different from those in other papers. And the controllers provided here are fully novel. We also illustrate the theoretical results through some examples.



    Semirings have significant applications in theory of automata, optimization theory, and in theoretical computer sciences (see [1,2,3]). A group of Russian mathematicians was able to create novel probability theory based on additive inverse semirings, called idempotent analysis (see[4,5]) having interesting applications in quantum physics. Javed et al. [6] identified a proper subclass of semirings known as MA-Semirings. The development of commutator identities and Lie type theory of semirings [6,7,8,9,10] and derivations [6,7,8,11,12] make this class quite interesting for researchers. To investigate commuting conditions for rings through certain differential identities and certain ideals are still interesting problems for researchers in ring theory (see for example [13,14,15,16,17,18,19]) and some of them are generalized in semirings (see [6,8,9,10,11,20]). In this paper we investigate commuting conditions of prime MA-semirings through certain differential identities and Jordan ideals (Theorems 2.5–2.8) and also study differential identities with the help of Jordan ideals (Theorem 2.3, Theorem 2.4, Theorem 2.10). In this connection we are able to generalize a few results of Oukhtite [21] in the setting of semirings. Now we present some necessary definitions and preliminaries which will be very useful for the sequel. By a semiring S, we mean a semiring with absorbing zero '0' in which addition is commutative. A semiring S is said to be additive inverse semiring if for each sS there is a unique sS such that s+s+s=s and s+s+s=s, where s denotes the pseudo inverse of s. An additive inverse semiring S is said to be an MA-semiring if it satisfies s+sZ(S),sS, where Z(S) is the center of S. The class of MA-semirings properly contains the class of distributive lattices and the class of rings, we refer [6,8,11,22] for examples. Throughout the paper by semiring S we mean an MA-semiring unless stated otherwise. A semiring S is prime if aSb={0} implies that a=0 or b=0 and semiprime if aSa={0} implies that a=0. S is 2-torsion free if for sS,2s=0 implies s=0. An additive mapping d:SS is a derivation if d(st)=d(s)t+sd(t). The commutator is defined as [s,t]=st+ts. By Jordan product, we mean st=st+ts for all s,tS. The notion of Jordan ideals was introduced by Herstein [23] in rings which is further extended canonically by Sara [20] for semirings. An additive subsemigroup G of S is called the Jordan ideal if sjG for all sS,jG. A mapping f:SS is commuting if [f(s),s]=0, sS. A mapping f:SS is centralizing if [[f(s),s],r]=0, s,rS. Next we include some well established identities of MA-semirings which will be very useful in the sequel. If s,t,zS and d is a derivation of S, then [s,st]=s[s,t], [st,z]=s[t,z]+[s,z]t, [s,tz]=[s,t]z+t[s,z], [s,t]+[t,s]=t(s+s)=s(t+t), (st)=st=st, [s,t]=[s,t]=[s,t], s(t+z)=st+sz, d(s)=(d(s)). To see more, we refer [6,7].

    From the literature we recall a few results of MA-semirings required to establish the main results.

    Lemma 1. [11] Let G be a Jordan ideal of an MA-semiring S. Then for all jG (a). 2[S,S]GG (b). 2G[S,S]G (c). 4j2SG (d). 4Sj2G (e). 4jSjG.

    Lemma 2. [11] Let S be a 2-torsion free prime MA-semiring and G a Jordan ideal of S. If aGb={0} then a=0 or b=0.

    In view of Lemma 1 and Lemma 2, we give some very useful remarks.

    Remark 1. [11]

    a). If r,s,tS,uG, then 2[r,st]uG.

    b). If aG={0} or Ga={0}, then a=0.

    Lemma 3. [12] Let G be a nonzero Jordan ideal and d be a derivation of a 2-torsion free prime MA-semiring S such that for all uG, d(u2)=0. Then d=0.

    Lemma 4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S. If aS such that for all gG, [a,g2]=0. Then [a,s]=0,sS and hence aZ(S).

    Proof. Define a function da:SS by da(s)=[a,s], which is an inner derivation. As every inner derivation is derivation, therefore in view of hypothesis da is derivation satisfying da(g2)=[a,g2]=0,gG. By Lemma 3, da=0, which implies that da(s)=[a,s]=0, for all sS. Hence aZ(S).

    Lemma 5. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If S is noncommutative such that for all u,vG and rS

    a[r,uv]b=0, (2.1)

    then a=0 or b=0.

    Proof. In (2.1) replacing r by ar and using MA-semiring identities, we obtain

    aa[r,uv]b+a[a,uv]rb=0 (2.2)

    Using (2.1) again, we get a[a,uv]Sb=0. By the primeness of S, we have either b=0 or a[a,uv]=0. Suppose that

    a[a,uv]=0 (2.3)

    In view of Lemma 1, replacing v by 2v[s,t] in (2.3) and using 2-torsion freeness of S, we get 0=a[a,uv[s,t]]=auv[a,[s,t]]+a[a,uv][s,t]. Using (2.3) again auv[a,[s,t]]=0 and therefore auG[a,[s,t]]={0}. By the Lemma 2, we have either aG={0} or [a,[s,t]]=0. By Remark 1, aG={0} implies a=0. Suppose that

    [a,[s,t]]=0 (2.4)

    In (2.4) replacing s by sa, we get [a,s[a,t]]+[a,[s,t]a]=0 and therefore [a,s[a,t]]+[a,[s,t]]a=0. Using (2.4) again, we get [a,s][a,t]=0. By the primeness of S, [a,s]=0 and therefore aZ(S). Hence from (2.2), we can write aS[r,uv]b={0}. By the primeness of S, we obtain a=0 or

    [r,uv]b=0 (2.5)

    In (2.5) replacing r by rs and using (2.5) again, we get [r,uv]Sb={0}. By the primeness of S, we have either b=0 or [r,uv]=0. Suppose that

    [r,uv]=0 (2.6)

    In (2.6) replacing y by 2v[s,t] and using (2.6) again, we obtain 2[r,uv[s,t]]=0. As S is 2-torsion free, [r,uv[s,t]]=0 which further gives uG[r,[s,t]]={0}. As G{0}, by Lemma 2 [r,[s,t]]=0 which shows that S is commutative, a contradiction. Hence we conclude that a=0 or b=0.

    Theorem 1. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1 and d2 are derivations of S such that for all uG,

    d1d2(u)=0 (2.7)

    then either d1=0 or d2=0.

    Proof. Suppose that d20. We will show that d1=0. In view of Lemma 1, replacing u by 4u2v,vG in (2.7), we obtain d1d2(4u2v)=0 and by the 2-torsion freeness of S, we have d1d2(u2v)=0. Using (2.7) again, we obtain

    d2(u2)d1(v)+d1(u2)d2(v)=0 (2.8)

    By lemma 1, replacing v by 2[r,jk]v,j,kG in (2.8), we get

    d2(u2)d1(2[r,jk]v)+d1(u2)d2(2[r,jk]v)=0

    and

    2d2(u2)[r,jk]d1(v)+2d2(u2)d1([r,jk])v+2d1(u2)[r,jk]d2(v)+2d1(u2)d2([r,jk])v=0

    Using (2.8) again and hence by the 2-torsion freeness of S, we obtain

    d2(u2)[r,jk]d1(v)+d1(u2)[r,jk]d2(v)=0 (2.9)

    In (2.9), replacing v by 4v2t,tS and using (2.9) again, we obtain

    4d2(u2)[r,jk]v2d1(t)+4d1(u2)[r,jk]v2d2(t)=0

    As S is 2-torsion free, therefore

    d2(u2)[r,jk]v2d1(t)+d1(u2)[r,jk]v2d2(t)=0 (2.10)

    In (2.10), taking t=d2(g),gG and using (2.7), we obtain

    d1(u2)[r,jk]v2d2(d2(g))=0 (2.11)

    In (2.11) writing a for d1(u2) and b for v2d2(d2(g)), we have a[r,jk]b=0,rS,j,kG.

    Firstly suppose that S is not commutative. By Lemma 5, we have a=0 or b=0. If d1(u2)=a=0, then by Lemma 3, d1=0. Secondly suppose that S is commutative. In (2.7) replacing u by 2u2, we obtain 0=d1d2(2u2)=2d1d2(u2)=4d1(ud2(u))=4(d1(u)d2(u)+ud1d2(u)). Using (2.7) and the 2-torsion freeness of S, we obtain d1(u)d2(u)=0. By our assumption S is commutative, therefore d1(u)Sd2(u)={0}. By the primeness of S, we have either d1(G)={0} or d2(G)={0}. By Theorem 2.4 of [11], we have d1=0 or d2=0. But d20. Hence d1=0 which completes the proof.

    Theorem 2. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1 and d2 are derivations of S such that for all uG

    d1(d2(u)+u)=0, (2.12)

    then d1=0.

    Proof. Firstly suppose that S is commutative. Replacing u by 2u2 in (2.12) and using (2.12) again, we obtain d1(u)d2(u)=0 which further implies d1(u)Sd2(u)={0}. In view of Theorem 2.4 of [11], by the primeness of S we have d1=0 or d2=0. If d2=0, then from (2.12), we obtain d1(u)=0,uG and hence by Lemma 3, we conclude d1=0. Secondly suppose that S is noncommutative. Further suppose that d20. We will show that d1=0. In (2.12) replacing u by 4u2v,vG, and using (2.12) again, we obtain 2(d2(u2)d1(v)+d1(u2)d2(v))=0. As S is 2-torsion free, therefore

    d2(u2)d1(v)+d1(u2)d2(v)=0 (2.13)

    In (2.13) replacing v by 2[r,jk]v,rS,j,k,vG, we obtain

    d2(u2)d1(2[r,jk])v+2d2(u2)[r,jk]d1(v)+d1(u2)d2(2[r,jk])v+2d1(u2)[r,jk]d2(v)=0

    As by MA-semiring identities, 2[r,jk]=2j[r,k]+2[r,j]k, by Lemma 1 2[r,jk]G. Therefore using (2.13) again and the 2-torsion freeness of S, we obtain

    d2(u2)[r,jk]d1(v)+d1(u2)[r,jk]d2(v)=0 (2.14)

    In (2.14) replacing v by 4v2t,tS and using (2.14) again, we get

    d2(u2)[r,jk]v2d1(t)+d1(u2)[r,jk]v2d2(t)=0 (2.15)

    In (2.15) taking t=t(d2(w)+w),wG, we get

    d2(u2)[r,jk]v2d1(t(d2(w)+w))+d1(u2)[r,jk]v2d2(t(d2(w)+w))=0

    and therefore

    d2(u2)[r,jk]v2d1(t)(d2(w)+w)+d2(u2)[r,jk]v2td1((d2(w)+w))

    +d1(u2)[r,jk]v2d2(t)(d2(w)+w)+d1(u2)[r,jk]v2td2(d2(w)+w)=0

    Using (2.12) and (2.15) in the last expression, we obtain

    (d1(u2))[r,jk](v2td2(d2(w)+w))=0 (2.16)

    Applying Lemma 5 on (2.15), we get either d1(u2)=0 or v2td2(d2(w)+w)=0. If d1(u2)=0 then by Lemma 3, d1=0. If v2Sd2(d2(w)+w)={0}, the by the primeness of S, we have v2=0 or d2(d2(w)+w)=0. If v2=0,vG, then G={0}, a contradiction. Suppose that for all wG

    d2(d2(w)+w)=0 (2.17)

    In (2.17)replacing w by 4z2u,z,uG, and using (2.17) again, we obtain

    d2(z2)d2(u)=0 (2.18)

    In (2.18), replacing u by 4xz2,xG and using (2.18) again, we obtain d2(z2)Gd2(z2)={0}. By Lemma 2, d2(z2)=0 and hence by Lemma 3, we conclude that d2=0. Taking d2=0 in the hypothesis to obtain d1(u)=0 and hence by Theorem 2.4 of [11], we have d1=0.

    Theorem 3. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be derivations of S such that for all u,vG

    [d1(u),d2(v)]+[u,v]=0 (2.19)

    Then S is commutative.

    Proof. If d1=0 or d2=0, then from (2.19), we obtain [G,G]={0}. By Theorem 2.3 of [11] S is commutative. We assume that both d1 and d2 are nonzero. In (2.19) replacing u by 4uw2 and using MA-semiring identities and 2-torsion freeness of S, we get

    d1(u)[2w2,d2(v)]+([d1(u),d2(v)]+[u,v])2w2+u([d1(2w2),d2(v)]

    +[2w2,v])+[u,d2(v)]d1(2w2)=0

    Using (2.19) again, we get

    d1(u)[2w2,d2(v)]+[u,d2(v)]d1(2w2)=0

    and by the 2-torsion freeness of S, we have

    d1(u)[w2,d2(v)]+[u,d2(v)]d1(w2)=0 (2.20)

    Replacing u by 2u[r,jk] in (2.20) and using it again, we obtain

    d1(u)[r,jk][w2,d2(v)]+[u,d2(v)][r,jk]d1(w2)=0 (2.21)

    In (2.21) replacing u by 4su2 and using (2.21) again, we obtain

    d1(s)u2[r,jk][w2,d2(v)]+[s,d2(v)]u2[r,jk]d1(w2)=0 (2.22)

    In (2.22) replacing s by d2(v)s and then using commutator identities, we get

    d1d2(v)su2[r,jk][w2,d2(v)]=0 (2.23)

    Therefore d1d2(v)Su2[r,jk][w2,d2(v)]={0}. By the primeness of S, we obtain either d1d2(v)=0 or u2[r,jk][w2,d2(v)]=0. Consider the sets

    G1={vG:d1d2(v)=0}

    and

    G2={vG:u2[r,jk][w2,d2(v)=0}

    We observe that G=G1G2. We will show that either G=G1 or G=G2. Suppose that v1G1G2 and v2G2G1. Then v1+v2G1+G2G1G2=G. We now see that 0=d1d2(v1+v2)=d1d2(v2), which shows that v2G1, a contradiction. On the other hand 0=u2[r,jk][w2,d2(v1+v2)]=u2[r,jk][w2,d2(v1)], which shows that v1G2, a contradiction. Therefore either G1G2 or G2G1, which respectively show that either G=G1 or G=G2. Therefore we conclude that for all vG, d1d2(v)=0 or u2[r,jk][w2,d2(v)]=0. Suppose that d1d2(v)=0,vG. then by Lemma 2.1, d1=0 or d2=0. Secondly suppose that u2[r,jk][w2,d2(v)]=0,u,v,w,j,kG,rS. By Lemma 5, we have either u2=0 or [w2,d2(v)]=0. But u2=0 leads to G={0} which is not possible. Therefore [w2,d2(v)]=0 and employing Lemma 4, [d2(v),s]=0,sS. Hence by Theorem 2.2 of [22], S is commutative.

    Theorem 4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be derivations of S such that for all u,vG

    d1(u)d2(v)+[u,v]=0 (2.24)

    Then d1=0 or d2=0 and thus S is commutative.

    Proof. It is quite clear that if at least one of d1 and d2 is zero, then we obtain [G,G]={0}. By Theorem 2.3 of [11] and Theorem 2.1 of [22], S is commutative. So we only show that at least one of the derivations is zero. Suppose that d20. In (2.24), replacing v by 4vw2,wG, we obtain d1(u)d2(4vw2)+[u,4vw2]=0 and therefore using MA-semirings identities, we can write

    4d1(u)vd2(w2)+4d1(u)d2(v)w2+4v[u,w2]+4[u,v]w2=0

    In view of Lemma 1 as 2w2G, using (2.24) and the 2-torsion freeness of S, we obtain

    d1(u)vd2(w2)+v[u,w2]=0 (2.25)

    In (2.25) replacing v by 2[s,t]v, s,tS and hence by the 2-torsion freeness of S, we get

    d1(u)[s,t]vd2(w2)+[s,t]v[u,w2]=0 (2.26)

    Multiplying (2.25) by [s,t] from the left, we get

    [s,t]d1(u)vd2(w2)+[s,t]v[u,w2]=0

    and since S is an MA-semiring, therefore

    [s,t]d1(u)vd2(w2)=[s,t]v[u,w2] (2.27)

    Using (2.27) into (2.26), we obtain d1(u)[s,t]vd2(w2)+[s,t]d1(u)vd2(w2)=0. By MA-semirings identities, we further obtain [d1(u),[s,t]]Gd2(w2)={0}. By Lemma 2, we obtain either [d1(u),[s,t]]=0 or d2(w2)=0. If d2(w2)=0, then by Lemma 3, d2=0. On the other hand, if

    [d1(u),[s,t]]=0 (2.28)

    In (2.28) replacing t by st, we get [d1(u),s[s,t]]=0 and using (2.23) again [d1(u),s][s,t]=0 and therefore [d1(u),s]S[s,t]={0} and by the primeness of S, we get [S,S]={0} and hence S is commutative or [d1(u),s]=0. In view of Theorem 2.2 of [22] from [d1(u),s]=0 we have [S,S]={0} which further implies S is commutative. Hence (2.19)becomes d1(u)d2(v)=0. As above we have either d1=0 or d2=0.

    Theorem 5. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1, d2 and d3 be nonzero. derivations such that for all u,vG either

    1). d3(v)d1(u)+d2(u)d3(v)=0 or

    2). d3(v)d1(u)+d2(u)d3(v)+[u,v]=0.

    Then S is commutative and d1=d2.

    Proof. 1). By the hypothesis for the first part, we have

    d3(v)d1(u)+d2(u)d3(v)=0 (2.29)

    which further implies

    d3(v)d1(u)=d2(u)d3(v) (2.30)

    In (2.29) replacing u by 4uw2, we obtain

    4d3(v)d1(u)w2+4d3(v)ud1(w2)+4d2(u)w2d3(v)+4ud2(w2)d3(v)=0

    and therefore by the 2-torsion freeness of S, we have

    d3(v)d1(u)w2+d3(v)ud1(w2)+d2(u)w2d3(v)+ud2(w2)d3(v)=0 (2.31)

    Using (2.30) into (2.31), we obtain

    d2(u)[d3(v),w2]+[d3(v),u]d1(w2)=0 (2.32)

    In (2.32) replacing u by 2u[r,jk],rS,j,kG, and using (2.32) again, we get

    d2(u)[r,jk][d3(v),w2]+[d3(v),u][r,jk]d1(w2)=0 (2.33)

    In (2.33) replacing u by 4tu2,tS and using 2-torsion freeness and (2.33) again, we get

    d2(t)u2[r,jk][d3(v),w2]+[d3(v),t]u2[r,jk]d1(w2)=0 (2.34)

    Taking t=d3(v)t in (2.34) and using (2.34) again we obtain

    d2d3(v)tu2[r,jk][d3(v),w2]=0 (2.35)

    We see that equation (2.35) is similar as (2.23) of the previous theorem, therefore repeating the same process we obtain the required result.

    2). By the hypothesis, we have

    d3(v)d1(u)+d2(u)d3(v)+[u,v]=0 (2.36)

    For d3=0, we obtain [G,G]={0} and by Theorem 2.3 of [11] this proves that S is commutative. Assume that d30. From (2.36), using MA-semiring identities, we can write

    d3(v)d1(u)=d2(u)d3(v)+[u,v] (2.37)

    and

    d3(v)d1(u)+[u,v]=d2(u)d3(v) (2.38)

    In (2.36), replacing u by 4uz2, we obtain

    4(d3(v)ud1(z2)+d3(v)d1(u)z2+d2(u)z2d3(v)+ud2(z2)d3(v)+u[z2,v])+[u,v]z2)=0

    and using (2.37) and (2.38) and then 2-torsion freeness of S, we obtain

    [d3(v),u]d1(z2)+d2(u)[d3(v),z2]=0 (2.39)

    We see that (2.39) is same as (2.32) of the previous part of this result. This proves that [S,S]={0} and hence S is commutative. Also then by the hypothesis, since d30, d1=d2.

    Theorem 6. Let G be nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be nonzero derivations of S such that for all u,vG

    [d2(v),d1(u)]+d1[v,u]=0 (2.40)

    Then S is commutative.

    In (2.40) replacing u by 4uw2,wG and using 2-torsion freeness and again using(2.40), we obtain

    [d2(v)+v,u]d1(w2)+d1(u)[d2(v)+v,w2]=0 (2.41)

    In (2.41) replacing u by 2u[r,jk],j,kG,rS, we obtain

    u[d2(v)+v,2[r,jk]]d1(w2)+2[d2(v)+v,u][r,jk]d1(w2)

    +ud1(2[r,jk])[d2(v)+v,w2]+2d1(u)[r,jk][d2(v)+v,w2]=0

    Using 2-torsion freeness and (2.41) again, we get

    [d2(v)+v,u][r,jk]d1(w2)+d1(u)[r,jk][d2(v)+v,w2]=0 (2.42)

    In(2.42) replacing u by 4tu2,tSand using (2.42) again, we get

    [d2(v)+v,t]u2[r,jk]d1(w2)+d1(t)u2[r,jk][d2(v)+v,w2]=0 (2.43)

    In (2.43) taking t=(d2(v)+v)t and using MA-semirings identities, we obtain

    (d2(v)+v)[d2(v)+v,t]u2[r,jk]d1(w2)+d1(d2(v)+v)tu2[r,jk][d2(v)+v,w2]

    +(d2(v)+v)d1(t)u2[r,jk][d2(v)+v,w2]=0

    and using (2.43) again, we obtain

    d1(d2(v)+v)tu2[r,jk][d2(v)+v,w2]=0 (2.44)

    By the primeness we obtain either d1(d2(v)+v)=0 or u2[r,jk][d2(v)+v,w2]=0. If d1(d2(v)+v)=0, then by Theorem 2 we have d1=0, which contradicts the hypothesis. Therefore we must suppose u2[r,jk][d2(v)+v,w2]=0. By Lemma 5, we have either u2=0 or [d2(v)+v,w2]=0. But u2=0 implies G={0} which is not possible. On the other hand applying Lemma 5, we have [d2(v)+v,r]=0,rS and therefore taking r=v,vG and [d2(v),v]+[v,v]=0 and using MA-semiring identities, we get

    [d2(v),v]+[v,v]=0 (2.45)

    As [v,v]=[v,v], from (2.45), we obtain [d2(v),v]+[v,v]=0 and therefore

    [d2(v),v]=[v,v] (2.46)

    Using (2.46) into (2.45), we get 2[d2(v),v]=0 and by the 2-torsion freeness of S, we get [d2(v),v]=0. By Theorem 2.2 of [22], we conclude that S is commutative.

    Corollary 1. Let G be nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d be a nonzero derivation of S such that for all u,vG d[v, u] = 0. Then S is commutative

    Proof. In theorem (6) taking d2=0 and d1=d, we get the required result.

    Theorem 7. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring and d2 be derivation of S. Then there exists no nonzero derivation d1 such that for all u,vG

    d2(v)d1(u)+d1(vu)=0 (2.47)

    Proof. Suppose on the contrary that there is a nonzero derivation d1 satisfying (2.47). In (2.47) replacing u by 4uw2,wG and using (2.47) again, we obtain

    d1(u)[w2,d2(v)+v]+[u,d2(v)]d1(w2)+ud1(vw2)+(uv)d1(w2)+ud1[v,w2]=0 (2.48)

    In (2.48), replacing u by u[r,jk],rS,j,kG and using (2.48) again, we get

    d1(u)[r,jk][w2,d2(v)+v]+[u,d2(v)+v][r,jk]d1(w2)=0 (2.49)

    In (2.49) replacing u by 4tu2,tS and using (2.49) again, we obtain

    d1(t)u2[r,jk][w2,d2(v)+v]+td1(u2)[r,jk][w2,d2(v)+v]

    +t[u2,d2(v)+v][r,jk]d1(w2)+[t,d2(v)+v]u2[r,jk]d1(w2)=0

    and using2-torsion freeness and (2.49) again, we obtain

    d1(t)u2[r,jk][w2,d2(v)+v]+[t,d2(v)+v]u2[r,jk]d1(w2)=0 (2.50)

    In (2.50) taking t=(d2(v)+v)t and using MA-semirings identities, we get d1(d2(v)+v)tu2[r,jk][w2,d2(v)+v]+(d2(v)+v)d1(t)u2[r,jk][w2,d2(v)+v]

    +(d2(v)+v)[t,d2(v)+v]u2[r,jk]d1(w2)=0

    Using (2.50) again, we obtain

    d1(d2(v)+v)tu2[r,jk][w2,d2(v)+v]=0 (2.51)

    that is d1(d2(v)+v)Su2[r,jk][w2,d2(v)+v]=0. Therefore by the primeness following the same process as above, we have either d1(d2(v)+v)=0 or u2[r,jk][w2,d2(v)+v]=0 for all u,v,j,k,wG,rS. If d1(d2(v)+v)=0. As d10, therefore d2(v)+v=0. Secondly suppose that u2[r,jk][w2,d2(v)+v]=0. By Lemma 5, we have either u2=0 or [w2,d2(v)+v]=0. But u2=0 implies that G={0}, a contradiction. Therefore we consider the case when [w2,d2(v)+v]=0, which implies, by Lemma 4, that [d2(v)+v,r]=0,rS and taking in particular t=vG, we have

    [d2(v),v]+[v,v]=0 (2.52)

    Also by definition of MA-semirings, we have [v,v]=[v,v]. Therefore [d2(v),v]+[v,v]=0 and therefore

    [d2(v),v]=[v,v] (2.53)

    Using (2.53) into (2.52) and then using 2-torsion freeness of S, we obtain [d(v),v]=0. By Theorem 2.2 of [22], we conclude that S is commutative. Therefore (2.47) will be rewritten as 2d1(u)d2(v)+2(d1(v)u+vd1(u))=0 and hence by the 2-torsion freeness of S, we obtain

    d1(u)d2(v)+d1(v)u+vd1(u)=0 (2.54)

    In (2.54) replacing u by 2uw and using 2-torsion freeness of S, we get

    d1(u)wd2(v)+ud1(w)d2(v)+d1(v)uw+vd1(u)w+vud1(w)=0

    and therefore

    w(d1(u)d2(v)+d1(v)u+vd1(u))+ud1(w)d2(v)+vud1(w)=0

    Using (2.54) again, we obtain

    ud1(w)d2(v)+vud1(w)=0 (2.55)

    In (2.55) replacing v by 2vz, we get

    ud1(w)d2(v)z+ud1(w)vd2(z)+vzud1(w)=0

    and therefore

    z(ud1(w)d2(v)+vud1(w))+ud1(w)vd2(z)=0

    and using (2.55) again, we get d1(w)uGd2(z)={0}. By the above Lemma 2, we have either d1(w)u=0 or d2(z)=0 and therefore by Remark 1, we have either d1(w)=0 or d2(z)=0. As d10, therefore d2=0. Therefore our hypothesis becomes d1(uv)=0 and therefore d1(u2)=0, uG. By Lemma 3, d1=0 a contraction to the assumption. Hence d1 is zero.

    We have proved the results of this paper for prime semirings and it would be interesting to generalize them for semiprime semirings, we leave it as an open problem.

    Taif University Researchers Supporting Project number (TURSP-2020/154), Taif University Taif, Saudi Arabia.

    The authors declare that they have no conflict of interest.



    [1] S. Zhu, J. Zhou, X. Yu, J. Lu, Synchronization of complex networks with nondifferentiable time-varying delay, IEEE Trans. Cybern., 52 (2022), 3342–3348. https://doi.org/10.1109/TCYB.2020.3022976 doi: 10.1109/TCYB.2020.3022976
    [2] X. He, H. Zhang, Exponential synchronization of complex networks via feedback control and periodically intermittent noise, J. Franklin Inst., 359 (2022), 3614–3630. https://doi.org/10.1016/j.jfranklin.2022.03.010 doi: 10.1016/j.jfranklin.2022.03.010
    [3] S. Zhu, J. Zhou, Q. Zhu, N. Li, J. Lu, Adaptive exponential synchronization of complex networks with nondifferentiable time-varying delay, IEEE Trans. Neural Networks Learn. Syst., 2022. https://doi.org/10.1109/TNNLS.2022.3145843 doi: 10.1109/TNNLS.2022.3145843
    [4] L. Shi, C. Zhang, S. Zhong, Synchronization of singular complex networks with time-varying delay via pinning control and linear feedback control, Chaos Solitons Fractals, 145 (2021), 110805. https://doi.org/10.1016/j.chaos.2021.110805 doi: 10.1016/j.chaos.2021.110805
    [5] X. Liu, Synchronization and control for multiweighted and directed complex networks, IEEE Trans. Neural Networks Learn. Syst., 2021. https://doi.org/10.1109/TNNLS.2021.3110681 doi: 10.1109/TNNLS.2021.3110681
    [6] J. Wang, J. Xia, H. Shen, M. Xing, J. H. Park, H synchronization for fuzzy markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule, IEEE Trans. Fuzzy Syst., 29 (2021), 3082–3092. https://doi.org/10.1109/TFUZZ.2020.3012761 doi: 10.1109/TFUZZ.2020.3012761
    [7] Y. Wu, B. Shen, C. K. Ahn, W. Li, Intermittent dynamic event-triggered control for synchronization of stochastic complex networks, IEEE Trans. Circuits Syst. I Regul. Pap., 68 (2021), 2639–2650. https://doi.org/10.1109/TCSI.2021.3071034 doi: 10.1109/TCSI.2021.3071034
    [8] H. Gu, K. Liu, J. L¨u, Adaptive PI control for synchronization of complex networks with stochastic coupling and nonlinear dynamics, IEEE Trans. Circuits Syst. I Regul. Pap., 67 (2020), 5268–5280. https://doi.org/10.1109/TCSI.2020.3020146 doi: 10.1109/TCSI.2020.3020146
    [9] Y. Liu, Z. Wang, L. Ma, Y. Cui, F. E. Alsaadi, Synchronization of directed switched complex networks with stochastic link perturbations and mixed time-delays, Nonlinear Anal.-Hybrid Syst., 27 (2018), 213–224. https://doi.org/10.1016/j.nahs.2017.07.006 doi: 10.1016/j.nahs.2017.07.006
    [10] L. Zhang, X. Yang, C. Xu, J. Feng, Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control, Appl. Math. Comput., 306 (2017), 22–30. https://doi.org/10.1016/j.amc.2017.02.004 doi: 10.1016/j.amc.2017.02.004
    [11] R. Sakthivel, M. Sathishkumar, B. Kaviarasan, S. M. Anthoni, Synchronization and state estimation for stochastic complex networks with uncertain inner coupling, Neurocomputing, 238 (2017), 44–55. https://doi.org/10.1016/j.neucom.2017.01.035 doi: 10.1016/j.neucom.2017.01.035
    [12] A. Hongsri, T. Botmart, W. Weera, P. Junsawang, New delay-dependent synchronization criteria of complex dynamical networks with time-varying coupling delay based on sampled-data control via new integral inequality, IEEE Access, 9 (2021), 64958–64971. https://doi.org/10.1109/ACCESS.2021.3076361 doi: 10.1109/ACCESS.2021.3076361
    [13] X. Yi, L. Ren, Z. Zhang, New criteria on global asymptotic synchronization of Duffing-type oscillator system, Nonlinear Anal. Model. Control, 25 (2020), 378–399. https://doi.org/10.15388/namc.2020.25.16656 doi: 10.15388/namc.2020.25.16656
    [14] D. Lˊopez-Mancilla, G. Lˊopez-Cahuich, C. Posadas-Castillo, C. E. Casta˜neda, J. H. Garcˊla-Lˊopez, J. L. Vˊazquez-Gutiˊerrez, et al., Synchronization of complex networks of identical and nonidentical chaotic systems via modelmatching control, PLoS ONE, 14 (2019), e0216349. https://doi.org/10.1371/journal.pone.0216349 doi: 10.1371/journal.pone.0216349
    [15] K. Sivaranjani, R. Rakkiyappan, J. Cao, A. Alsaedi, Synchronization of nonlinear singularly perturb e d complex networks with uncertain inner coupling via event triggered control, Appl. Math. Comput., 311 (2017), 283–299. https://doi.org/10.1016/j.amc.2017.05.007 doi: 10.1016/j.amc.2017.05.007
    [16] H. Dai, W. Chen, J. Jia, J. Liu, Z. Zhang, Exponential synchronization of complex dynamical networks with time-varying inner coupling via event-triggered communication, Neurocomputing, 245 (2017), 124–132. https://doi.org/10.1016/j.neucom.2017.03.035 doi: 10.1016/j.neucom.2017.03.035
    [17] C. Zhang, X. Wang, C. Wang, Synchronization of complex networks with time-varying inner coupling and outer coupling matrices, Math. Methods Appl. Sci., 40 (2017), 4237–4245. https://doi.org/10.1002/mma.4300 doi: 10.1002/mma.4300
    [18] R. Sakthivel, R. Sakthivel, F. Alzahrani, P. Selvaraj, S. M. Anthoni, Synchronization of complex dynamical networks with random coupling delay and actuator faults, ISA Trans., 94 (2019), 57–69. https://doi.org/10.1016/j.isatra.2019.03.029 doi: 10.1016/j.isatra.2019.03.029
    [19] Y. Wu, R. Lu, P. Shi, H. Su, Z. Wu, Sampled-data synchronization of complex networks with partial couplings and T-S fuzzy nodes, IEEE Trans. Fuzzy Syst., 26 (2018), 782–793. https://doi.org/10.1109/TFUZZ.2017.2688490 doi: 10.1109/TFUZZ.2017.2688490
    [20] X. Yang, X. Li, J. Lu, Z. Cheng, Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control, IEEE Trans. Cybern., 50 (2020), 4043–4052. https://doi.org/10.1109/TCYB.2019.2938217 doi: 10.1109/TCYB.2019.2938217
    [21] Y. Bao, Y. Zhang, Synchronization of complex networks with memristive neural network nodes via impulsive control, in 2019 Chinese Control And Decision Conference (CCDC), 2019, 2355–2360. https://doi.org/10.1109/CCDC.2019.8833419
    [22] X. Yang, J. Lu, D. W. C. Ho, Q. Song, Synchronization of uncertain hybrid switching and impulsive complex networks, Appl. Math. Model., 59 (2018), 379–392. https://doi.org/10.1016/j.apm.2018.01.046 doi: 10.1016/j.apm.2018.01.046
    [23] X. Yao, Y. Liu, Z. Zhang, W. Wan, Synchronization rather than finite-time synchronization results of fractional-order multi-weighted complex networks, IEEE Trans. Neural Networks Learn. Syst., 2021. https://doi.org/10.1109/TNNLS.2021.3083886 doi: 10.1109/TNNLS.2021.3083886
    [24] V. K. Yadav, V. K. Shukla, S. Das, Exponential synchronization of fractional-order complex chaotic systems and its application, Chaos Solitons Fractals, 147 (2021), 110937. https://doi.org/10.1016/j.chaos.2021.110937 doi: 10.1016/j.chaos.2021.110937
    [25] Y. Yang, C. Hua, J. Yu, H. Jiang, S. Wen, Synchronization of fractional-order spatiotemporal complex networks with boundary communication, Neurocomputing, 450 (2021), 197–207. https://doi.org/10.1016/j.neucom.2021.04.008 doi: 10.1016/j.neucom.2021.04.008
    [26] L. Li, X. Liu, M. Tang, S. Zhang, X. Zhang, Asymptotical synchronization analysis of fractional-order complex neural networks with non-delayed and delayed couplings, Neurocomputing, 445 (2021), 180–193. https://doi.org/10.1016/j.neucom.2021.03.001 doi: 10.1016/j.neucom.2021.03.001
    [27] Y. Xu, Q. Wang, W. Li, J. Feng, Stability and synchronization of fractional-order delayed multilink complex networks with nonlinear hybrid couplings, Math. Methods Appl. Sci., 44 (2021), 3356–3375. https://doi.org/10.1002/mma.6946 doi: 10.1002/mma.6946
    [28] H. Li, J. Cao, C. Hu, L. Zhang, Z. Wang, Global synchronization between two fractional-order complex networks with non-delayed and delayed coupling via hybrid impulsive control, Neurocomputing, 356 (2019), 31–39. https://doi.org/10.1016/j.neucom.2019.04.059 doi: 10.1016/j.neucom.2019.04.059
    [29] Z. Hu, H. Ren, P. Shi, Synchronization of complex dynamical networks subject to noisy sampling interval and packet loss, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 3216–3226. https://doi.org/10.1109/TNNLS.2021.3051052 doi: 10.1109/TNNLS.2021.3051052
    [30] J. Feng, L. Zhang, J. Wang, Y. Zhao, The synchronization of complex dynamical networks with discontinuous dynamics and exogenous disturbances, Asian J. Control, 23 (2021), 2837–2848. https://doi.org/10.1002/asjc.2414 doi: 10.1002/asjc.2414
    [31] B. Rehˊak, V. Lynnyk, Synchronization of symmetric complex networks with heterogeneous time delays, in 2019 22nd International Conference on Process Control (PC19), 2019, 68–73. https://doi.org/10.1109/PC.2019.8815036
    [32] A. Kazemy, K. Shojaei, Synchronization of complex dynamical networks with dynamical behavior links, Asian J. Control, 22 (2020), 474–485. https://doi.org/10.1002/asjc.1910 doi: 10.1002/asjc.1910
    [33] J. Zhang, J. Sun, Exponential synchronization of complex networks with continuous dynamics and Boolean mechanism, Neurocomputing, 307 (2018), 146–152. https://doi.org/10.1016/j.neucom.2018.03.061 doi: 10.1016/j.neucom.2018.03.061
    [34] M. A. Alamin Ahmeda, Y. Liu, W. Zhang, F. E. Alsaadic, Exponential synchronization via pinning adaptive control for complex networks of networks with time delays, Neurocomputing, 225 (2017), 198–204. https://doi.org/10.1016/j.neucom.2016.11.022 doi: 10.1016/j.neucom.2016.11.022
    [35] Q. Cui, L. Li, J. Lu, A. Alofi, Finite-time synchronization of complex dynamical networks under delayed impulsive effects, Appl. Math. Comput., 430 (2022), 127290. https://doi.org/10.1016/j.amc.2022.127290 doi: 10.1016/j.amc.2022.127290
    [36] H. Zhang, X. Zheng, N. Li, Finite-Time pinning synchronization control for coupled complex networks with time-varying delays, Discrete Dyn. Nat. Soc., 2022 (2022), 7119370. https://doi.org/10.1155/2022/7119370 doi: 10.1155/2022/7119370
    [37] J. Wang, L. Zhao, H. Wu, T. Huang, Finite-time passivity and synchronization of multi-weighted complex dynamical networks under PD control, IEEE Trans. Neural Networks Learn. Syst., 2022. Available from: https://doi.org/10.1109/TNNLS.2022.3175747 doi: 10.1109/TNNLS.2022.3175747
    [38] N. Gunasekaran, M. S. Ali, S. Arik, H. I. Abdul Ghaffar, A. A. Zaki Diab, Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal, Neural Networks, 149 (2022), 137–145. https://doi.org/10.1016/j.neunet.2022.02.013 doi: 10.1016/j.neunet.2022.02.013
    [39] W. Yuan, Y. Ma, Finite-time H synchronization for complex dynamical networks with time-varying delays based on adaptive control, ISA Trans., 128 (2021), 109–122. https://doi.org/10.1016/j.isatra.2021.11.018 doi: 10.1016/j.isatra.2021.11.018
    [40] W. Zhang, X. Yang, S. Yang, A. Alsaedi, Finite-time and fixed-time bipartite synchronization of complex networks with signed graphs, Math. Comput. Simul., 188 (2021), 319–329. https://doi.org/10.1016/j.matcom.2021.04.013 doi: 10.1016/j.matcom.2021.04.013
    [41] M. S. Ali, L. Palanisamy, N. Gunasekaran, A. Alsaedi, B. Ahmad, Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks, Discrete Cont. Dyn.-S, 14 (2021), 1465–1477. https://doi.org/10.3934/dcdss.2020395 doi: 10.3934/dcdss.2020395
    [42] X. Li, H. Wub, J. Cao, Synchronization in finite time for variable-order fractional complex dynamic networks with multi-weights and discontinuous nodes based on sliding mode control strategy, Neural Networks, 139 (2021), 335–347. https://doi.org/10.1016/j.neunet.2021.03.033 doi: 10.1016/j.neunet.2021.03.033
    [43] J. He, H. Chen, M. Ge, T. Ding, L. Wang, C. Liang, Adaptive finite-time quantized synchronization of complex dynamical networks with quantized time-varying delayed couplings, Neurocomputing, 431 (2021), 90–99. https://doi.org/10.1016/j.neucom.2020.12.038 doi: 10.1016/j.neucom.2020.12.038
    [44] Y. Luo, Y. Yao, Z. Cheng, X. Xiao, H. Liu, Event-triggered control for coupled reaction-diffusion complex network systems with finite-time synchronization, Phys. A, 562 (2021), 125219. https://doi.org/10.1016/j.physa.2020.125219 doi: 10.1016/j.physa.2020.125219
    [45] Y. Ren, H. Jiang, J. Li, B. Lu, Finite-time synchronization of stochastic complex networks with random coupling delay via quantized aperiodically intermittent control, Neurocomputing, 420 (2021), 337–348. https://doi.org/10.1016/j.neucom.2020.05.103 doi: 10.1016/j.neucom.2020.05.103
    [46] J. Wang, Z. Qin, H. Wu, T. Huang, Finite-time synchronization and H synchronization of multiweighted complex networks with adaptive state couplings, IEEE Trans. Cybern., 50 (2020), 600–612. https://doi.org/10.1109/TCYB.2018.2870133 doi: 10.1109/TCYB.2018.2870133
    [47] J. Wang, T. Ru, J. Xia, Y. Wei, Z. Wang, Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An H event-triggered control scheme, Appl. Math. Comput., 356 (2019), 235–251. https://doi.org/10.1016/j.amc.2019.03.037 doi: 10.1016/j.amc.2019.03.037
    [48] H. Li, J. Cao, H. Jiang, A. Alsaedi, Finite-time synchronization and parameter identification of uncertain fractional-order complex networks, Phys. A, 533 (2019), 122027. https://doi.org/10.1016/j.physa.2019.122027 doi: 10.1016/j.physa.2019.122027
    [49] X. Liu, D. W. C. Ho, Q. Song, W. Xu, Finite/Fixed-Time Pinning Synchronization of Complex Networks With Stochastic Disturbances, IEEE Trans. Cybern., 49 (2019), 2398–2403. https://doi.org/10.1109/TCYB.2018.2821119 doi: 10.1109/TCYB.2018.2821119
    [50] W. Jiang, L. Li, Z. Tu, Y. Feng, Semiglobal finite-time synchronization of complex networks with stochastic disturbance via intermittent control, Int. J. Robust Nonlinear Control, 29 (2019), 2351–2363. https://doi.org/10.1002/rnc.4496 doi: 10.1002/rnc.4496
    [51] H. Li, J. Cao, H. Jiang, A. Alsaedi, Finite-time synchronization of fractional-order complex networks via hybrid feedback control, Neurocomputing, 320 (2018), 69–75. https://doi.org/10.1016/j.neucom.2018.09.021 doi: 10.1016/j.neucom.2018.09.021
    [52] G. Ji, C. Hu, J. Yu, H. Jiang, Finite-time and fixed-time synchronization of discontinuous complex networks: A unified control framework design, J. Franklin Inst., 355 (2018), 4665–4685. https://doi.org/10.1016/j.jfranklin.2018.04.026 doi: 10.1016/j.jfranklin.2018.04.026
    [53] D. Zhang, Y. Shen, J. Mei, Finite-time synchronization of multi-layer nonlinear coupled complex networks via intermittent feedback control, Neurocomputing, 225 (2017), 129–138. https://doi.org/10.1016/j.neucom.2016.11.005 doi: 10.1016/j.neucom.2016.11.005
    [54] N. Gunasekaran, M. S. Ali, S. Arik, H. I. Abdul Ghaffar, A. A. Zaki Diab, Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal, Neural Networks, 149 (2022), 137–145. https://doi.org/10.1016/j.neunet.2022.02.013 doi: 10.1016/j.neunet.2022.02.013
    [55] N. Gunasekaran, G. Zhai, Q. Yu, Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit, Neurocomputing, 413 (2020), 499–511. https://doi.org/10.1016/j.neucom.2020.05.060 doi: 10.1016/j.neucom.2020.05.060
    [56] M. Thiele, R. Berner, P. A. Tass, E. Sch¨oll, S. Yanchuk, Asymmetric Adaptivity induces Recurrent Synchronization in Complex Networks, preprint, arXiv: 2112.08697.
    [57] N. Li, X. Wu, J. Feng, J. L¨u, Fixed-Time Synchronization of Complex Dynamical Networks: A Novel and Economical Mechanism, IEEE Trans. Cybern., 8 (2022), 33072–33079. https://doi.org/10.1109/ACCESS.2020.2970789 doi: 10.1109/ACCESS.2020.2970789
    [58] C. Hu, H. He, H. Jiang, Fixed/Preassigned-time synchronization of complex networks via improving fixed-time stability, IEEE Trans. Cybern., 51 (2021), 2882–2892. https://doi.org/10.1109/TCYB.2020.2977934 doi: 10.1109/TCYB.2020.2977934
    [59] H. Shen, X. Hu, J. Wang, J. Cao, W. Qian, Non-Fragile H synchronization for markov jump singularly perturbed coupled neural networks subject to double-layer switching regulation, IEEE Trans. Neural Networks Learn. Syst., 2021. Available from: https://doi.org/10.1109/TNNLS.2021.3107607
    [60] L. Zhang, J. Zhong, J. Lu, Intermittent control for finite-time synchronization of fractional-order complex networks, Neural Networks, 144 (2021), 11–20. https://doi.org/10.1016/j.neunet.2021.08.004 doi: 10.1016/j.neunet.2021.08.004
    [61] Z. Zhang, J. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 1476–1485. https://doi.org/10.1109/TNNLS.2018.2868800 doi: 10.1109/TNNLS.2018.2868800
    [62] Z. Zhang, M. Chen, A. Li, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills, Neurocomputing, 373 (2020), 15–23. https://doi.org/10.1016/j.neucom.2019.09.034 doi: 10.1016/j.neucom.2019.09.034
    [63] Z. Zhang, J. Cao, Finite-time synchronization for fuzzy inertial neural networks by maximum-value approach, IEEE Trans. Fuzzy Syst., 30 (2022), 1436–1446. https://doi.org/10.1109/TFUZZ.2021.3059953 doi: 10.1109/TFUZZ.2021.3059953
    [64] L. Wang, T. Chen, Finite-time anti-synchronization of neural networks with time-varying delays, Neurocomputing, 275 (2018), 1595–1600. https://doi.org/10.1016/j.neucom.2017.09.097 doi: 10.1016/j.neucom.2017.09.097
    [65] Z. Zhang, T. Zheng, S. Yu, Finite-time anti-synchronization of neural networks with time-varying delays via inequality skills, Neurocomputing, 356 (2019), 60–68. https://doi.org/10.1016/j.neucom.2019.05.012 doi: 10.1016/j.neucom.2019.05.012
    [66] Z. Zhang, A. Li, S. Yu, Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method, Neurocomputing, 318 (2018), 248–260. https://doi.org/10.1016/j.neucom.2018.08.063 doi: 10.1016/j.neucom.2018.08.063
  • This article has been cited by:

    1. Tariq Mahmood, Liaqat Ali, Muhammad Aslam, Ghulam Farid, On commutativity of quotient semirings through generalized derivations, 2023, 8, 2473-6988, 25729, 10.3934/math.20231312
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1660) PDF downloads(102) Cited by(3)

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog