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Abstract: In this article, we mainly focus on the finite-time synchronization of delayed multinoniden-
tical coupled complex dynamical networks. By applying the Zero-point theorem, novel differential
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fully novel. We also illustrate the theoretical results through some examples.
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1. Introduction

The coupled complex networks have aroused great interests of researchers, due to their extensive
application in a wide range of observable systems, including electrical distribution networks, social
networks, the Internet, scientific citation networks, and etc. Over the past few decades, complex net-
works have received much attention due to their potential applications in many real-world systems,
such as biological systems, chemical systems, image processing, social systems, engineering and tech-
nological systems. The dynamical behaviors of complex networks are worthy of our consideration,
and many useful theoretical results have been acquired in recent years, such as asymptotic/exponenial
synchronization, such as [1–5] and H∞ synchronization for markov jump chaotic systems [6].

Some researchers designed the synchronization, and the adaptive exponential synchronization prob-
lem of complex networks with nondifferentiable delays through analyzing the boundary of the adaptive
control gain and the extended Halanay inequality, or a delay differential inequality, see [1,3]. In [2]
and [4], the authors applied feedback control to investigate the issue of the asymptotic synchronization
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for complex networks. In [5], the synchronization of multiweighted and directed complex networks
was studied. In the process, they decompose inner coupling matrices into diagonal matrices and resid-
ual matrices, and measure the similarity between outer coupling matrices. As opposed to the existing
correlative studies, other professors considered the synchronization problems of complex networks
by employing stochastic analysis techniques, for example, [7–11]. In [12], [13] and [14], from the
prospective of integral inequality techniques, new delay-dependent global asymptotic synchronization
conditions for dynamical systems and complex networks were established. In [8,11] and [15–19], the
authors focused on the asymptotic synchronization of complex dynamical networks with coupling de-
lays. Using impulsive effects control and linear matrix inequalities, they systematically concerned the
synchronization analysis of complex networks in [20–22]. The global synchronization of fractional-
order complex delayed networks was also explored in [23–28]. In actuality, the phenomenon of syn-
chronization happens frequently in nature. There exists many wonderful results on controlling the
asymptotic synchronization of complex networks, we can see [14,29–31] and [32–34].

The finite-time synchronization (FTS) plays an important role in the dynamic analysis of complex
neural networks, for instance, [35–39]. Cui et al. [35] extended the existing criterion of local FTS to
global FTS for complex dynamical networks with delayed impulses by means of establishing proper
Lyapunov function. Zhang et al. [36] took advantage of the finite-time stability theorem to control the
FTS for coupling delayed complex networks. Wang et al. [37] applied proportional-derivative (PD)
control and inequality techniques to realize the finite-time passivity and FTS of complex dynamical
networks with multiple state/derivative couplings. In [38], authors concentrated on switched complex
dynamical networks with distributed coupling delays, and proposed the finite-time synchronized condi-
tions by combining linear matrix inequalities with integral inequality. Yuan and Ma [39] took external
disturbances into account in the delayed complex dynamical networks with unknown internal coupling
matrices, and further investigated their finite-timeH∞ synchronization by utilizing the adaptive control
method.

The synchronization issue for all dynamical nodes in the network is studied when the dynamical
networks are first characterized in terms of a differential equation with a coupling term between dy-
namical nodes. Up to present, the results for finite-time synchronization of complex dynamic networks
have been obtained chiefly by applying Lyapunov or Lyapunov-Krasovskii functional method [35, 37,
39–42, 51], Lyapunov stability theory [36, 44, 45], analysis theory [40, 43, 47–49, 51], graph theory
[45], inequality techniques [37, 38, 41, 50], finite-time stability theorem [52, 53], the matrix inequality
method [36, 37, 42, 44], and feedback control [46, 60]. Thus, it is urgent for us to find new study
approaches to study the finite-time synchronization for drive-response complex dynamical systems. It
inspires us to construct new inequalities to obtain the finite-time t of finite-time synchronization. In
this paper, firstly, we construct three novel inequalities; then by combining the Zero-point theorem
with these three novel differential inequalities and devising some different controllers related to time
variable t, we obtain the finite-time synchronization criteria of drive-response delayed multinoniden-
tical coupled complex dynamical networks. The difficulty of the proof in our paper is how to find
novel inequalities related to the time variable t (t > a, a is a positive number) to design the expected
controllers. Accordingly, the master contribution of this paper includes the following two aspects:
1) Three new inequalities are constructed to study the finite-time synchronization;
2) The novel controllers are designed in our paper which are completely different from those in the
existing papers;
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3) We give three novel criteria to make sure the finite-time synchronization between the drive system
and the response system applying the Zero-point theorem and novel differential inequality.

The rest of this paper is arranged as follows: In Section 2, we introduce some necessary prelim-
inaries. In Section 3, we adopt the Zero-point theorem and inequality techniques and prove that the
finite-time synchronization between drive system (2.2) and response system (2.3) under three novel
established criteria. And in Section 4, three examples are provided to illustrate the effectiveness and
feasibility of the attained results intuitively.

2. Preliminaries

In our paper, we are interested in a kind of drive-response coupled heterogeneous complex networks.
Generally, a Duffing-type oscillator is described as follows:

x(t) + bx′(t) + h(x(t)) = p(t),

which b is the damping constant, p(t) is continuous and periodic, which is called driving force, and
h : R → R is the nonlinear restoring force. With regard to n nonidentical Duffing-type oscillator
respectively, they are represented as following:

x′′i (t) + bx′i(t) + h(xi(t)) = pi(t),

where pi(i = 1, 2, · · · , n) are not identical. In the field of neural networks, the property of delay plays
a vital role. Naturally, we refer the description about the delayed complex dynamical network coupled
with the n nonidentical nodes in [11]:

x′′i (t) + bx′i(t) + h(xi(t), xi(t − σ(t))) = pi(t) + c
n∑

j=1

ai jx j(t), (2.1)

where i = 1, 2, · · · , n, b > 0 is the damping constant,c > 0 is the coupling strength, and pi(t) are
the continuous periodic driving forces. Here, σ(t) : R → R is a continuous function, which satisfies
σ′(t) < σ. Besides,ai j = a ji > 0 if and only if there is a coupling between nodes i and j(i , j), and
ai j = 0 otherwise. Then (2.1) is a coupled system, and we suppose that ai j = a ji > 0.

The initial values of system (2.1) are

xi(s) = φx
i (s),

dxi(s)
dt
= ψx

i (s).

where φx
i (s), ψx

i (s) are continuous functions with real-valued bounds defined on [−α, 0], α = max
t∈R
{σ(t)}.

We make the linear transformation for the system (2.1), which is yi(t) = x′i(t) + λixi(t). Here
the parameter λi is a chosen constant. On account of this linear transformation, system (2.1) can be
rewritten as 

x′i(t) = −λixi(t) + yi(t),
y′i(t) = (b − λi)λixi(t) + (λi − b)yi(t) − h(xi(t), xi(t − σ(t)))

+ c
n∑

j=1
ai jx j(t) + pi(t).

(2.2)
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Supposing that system (2.2) is called as the drive system, and correspondingly, the response system
can be represented as follows:

u′i(t) = −λiui(t) + vi(t) + Pi(t),
v′i(t) = (b − λi)λiui(t) + (λi − b)vi(t) − h(ui(t), ui(t − σ(t)))

+ c
n∑

j=1
ai ju j(t) + pi(t) + Qi(t),

(2.3)

where Pi(t) and Qi(t) are the controllers which need to design later.
Assumption (H1). ∀x(t), y(t), x(t − σ(t)), y(t − σ(t)) ∈ R, there exist positive constants M1,M2 such
that the following inequality holds:

|h(x(t), x(t − σ(t)) − f (y(t), y(t − σ(t)))|
≤ M1|x(t) − y(t)| + M2|x(t − σ(t)) − y(t − σ(t))|,

where | · | is the norm of Euclidean space R.
Definition 2.1. Drive-response systems (2.2) and (2.3) are said to be finite-time synchronized, if for
arbitrary solutions of systems (2.2) and (2.3) denoted by [x1(t), x2(t), · · · ,
xn(t), y1(t), y2(t), · · · , yn(t)]T and [u1(t), u2(t), · · · , un(t), v1(t), v2(t), · · · , vn(t)]T , under a proper con-
troller, there exists a time T > 0 which is related to the initial condition, such that for i = 1, 2, · · · , n,

lim
t→T
|ui(t) − xi(t)| = 0; lim

t→T
|vi(t) − yi(t)| = 0;

|ui(t) − xi(t)| = 0, t > T ; |vi(t) − yi(t)| = 0, t > T.

Lemma 2.1 If t > 1
2 , then et+ 1

2 − ln(t + 1
2 ) > 0.

Proof. Due to et > t > ln t, (t > 1), so it is obvious that et+ 1
2 > ln(t + 1

2 ), (t > 1
2 ).

Lemma 2.2 If p > 1, q > 1 and 1
p +

1
q = 1, then when t > 2

3 , 1
p (t + 1

3 )p − ln(t + 1
3 ) > −1

q .
Proof. Let f (t) = 1

p (t + 1
3 )p − ln(t + 1

3 ) + 1
q .

It is apparent that f ′(t) = (t+ 1
3 )p

t+ 1
3

.

Since t > 2
3 , i.e., t + 1

3 > 1, we can know that when t > 2
3 , p > 1, f ′(t) > 0, which means that f (t) is

a monotonically increasing function when t > 2
3 .

Therefore, f (t) > f ( 2
3 ) = 1

p +
1
q = 1 > 0, t > 2

3 .

Furthermore, 1
p (t + 1

3 )p − ln(t + 1
3 ) > −1

q holds.
Lemma 2.3 If t > 1

2 , then 4t−2
2t+3 − ln(2t + 1) + ln 2 < 0.

Proof. Let f (t) = 4t−2
2t+3 − ln(2t + 1) + ln 2, t > 1

2 .
Then, we can obtain f ′(t) = − 2(2t−1)2

(2t+3)2(2t+1) < 0, t > 1
2 .

As a result, f (t) is a monotonically decreasing function when t > 1
2 .

Thus, we have f (t) < f (1
2 ) = 0. So, 4t−2

2t+3 − ln(2t + 1) + ln 2 < 0, t > 1
2 .

Lemma 2.4 Assume that z = f (x, y) is defined on (0,+∞) × (0,+∞) and (x0, y0) is a unique local
maximum value point. Then max

(x,y)∈(0,+∞)×(0,+∞)
f (x, y) = max{ f (x0, y0); f (0,+∞);

f (+∞,+∞); f (+∞, 0)}.
Proof. The proof is known well and it is omitted.
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3. Main results

Denote ei(t) = ui(t) − xi(t), r j(t) = v j(t) − y j(t), then we can get the following error system of the
drive system (2.2) and the response system (2.3) for i = 1, 2, · · · , n :

e′i(t) = −λiei(t) + ri(t) + Pi(t)
r′i (t) = (b − λi)λiei(t) + (λi − a)ri(t) + h[xi(t), xi(t − σ(t))]−

h[ui(t), ui(t − σ(t))] + c
n∑

j=1
ai je j(t) + Qi(t).

(3.1)

The controllers in system (3.1) are devised as follows for i = 1, 2, · · · , n: Pi(t) = sign[ei(t)]
[
k2|ei(t)| − k1 exp{|ei(t)|}

]
,

Qi(t) = sign[ri(t)]
[
l1|ri(t)|2 + l2 exp{|ri(t)|} + ϕ(t) + l3ri(t)

]
,

(3.2)

 Pi(t) = [ei(t)]−1
[
w1e2

i (t) − exp{2|ei(t)|} + θ1|ei(t)|
]
,

Qi(t) = [ri(t)]−1
[
w2r2

i (t) + θ3|ri(t)| + θ2 +
ρ(t)
2

]
,

(3.3)

and  Pi(t) = sign[ei(t)]
[
k4|ei(t)| − k3|ei(t)|3

]
,

Qi(t) = sign[ri(t)]
[
l4|ri(t)| + l6 sin(|ri(t)|) + l5 cos(|ri(t)|) + ψ(t)

]
,

(3.4)

where ϕ(t) = 2
2t+1et+ 1

2 − 1, t > 1
2 , k1 > 0, l2 < 0, 2l1 + l2 < 0; ρ(t) = 3

3t+1 − (t + 1
3 )p−1 − 1, t > 2

3 ,w1 <

0,w2 < 0, θ1 > 2, θ3 > 0, θ2 <
θ2

3
2Ri

;ψ(t) = 16
(2t+3)2 −

2
2t+1 − 3V(0), t > 1

2 , k3 < 0, l5 < 0, k2, l3, k4, l4, l6 are
constants, V(t) are defined in Theorem 3.1 and V(0) is the value when t = 0 in V(t). Here, the signs
ei(t) and e represent the errors and the natural constant respectively.
Remark 1. For controllers (3.2), (3.3), ϕ(t), ρ(t) is independent of the initial values of error system,
while in (3.4), ψ(t) is related to the initial values of error system. Hence, there is a difference among
the controllers (3.4) and (3.2), (3.3). The finite-time synchronization between the drive system (2.2)
and the response system (2.3) is obtained under these three controllers and some conditions.
Theorem 3.1. Suppose that the condition (H1) is satisfied. Then the drive system (2.2) and the response
system (2.3) are finite-time synchronized under the controllers (3.2) in a finite time t1, where t1 =

max
{

1
2 ,

V(0)
n + ln 2 + e

1
2

}
, if the following conditions hold:

(H2)

0 < Ai = (k2 − λi) + |b − λi||λi| + M1 + c
n∑

j=1

a ji +
M2

1 − σ
< ek1;

(H3)
Bi = l3 + 1 + λi − b < −l2.

Proof. We set up the following Lyapunov function:

V(t) = V1(t) + V2(t),

where,V1(t) =
n∑

i=1
|ei(t)| +

n∑
i=1
|ri(t)|,V2(t) =

n∑
i=1

M2
1−σ

∫ t

t−σ(t)
|ei(s)|ds.
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According the system (3.1), Lemma 2.1, assumption (H1) and the controllers (3.2), we have

dV1(t)
dt

=

n∑
i=1

d(sign[ei(t)]ei(t))
dt

+

n∑
i=1

d(sign[r j(t)]r j(t))
dt

=

n∑
i=1

sign[ei(t)]
{
− λiei(t) + ri(t) + Pi(t)

}
+

n∑
i=1

sign[r j(t)]
{
(b − λi)λiei(t)

+(λi − b)ri(t) + h[xi(t), xi(t − σ(t)))] − h[ui(t), ui(t − σ(t)))]

+c
n∑

j=1

ai je j(t) + Qi(t)
}

≤

n∑
i=1

{
(k2 − λi)|ei(t)| − k1 exp{|ei(t)|} + |ri(t)|

}
+

n∑
i=1

{
(l3 + λi − b)|r j(t)|

+|b − λi||λi||ei(t)| + |h(xi(t), xi(t − σ(t))) − h(ui(t), ui(t − σ(t)))|

+c
n∑

j=1

ai j|e j(t)| + l1|r j(t)|2 + l2 exp{|r j(t)|} + ϕ(t)
}

≤

n∑
i=1

{
(k2 − λi)|ei(t)| − k1 exp{|ei(t)|} + |ri(t)|

}
+

n∑
i=1

{
(l3 + λi − b)|r j(t)|

+|b − λi||λi||ei(t)| + M1|ei(t)| + M2|ei(t − σ(t))|

+c
n∑

j=1

ai j|e j(t)| + l1|r j(t)|2 + l2 exp{|r j(t)|} + ϕ(t)
}

≤

n∑
i=1

{[
(k2 − λi) + |b − λi||λi| + M1 + c

n∑
j=1

a ji

]
|ei(t)| + M2|ei(t − σ(t))| + (l3 + 1

+λi − b)|ri(t)| − k1 exp{|e j(t)|} + l1|r j(t)|2 + l2 exp{|r j(t)|} + ϕ(t)
}
. (3.5)

On the other side, we have

dV2(t)
dt

=

n∑
i=1

M2

1 − σ

∫ t

t−σ(t)
|ei(s)|ds

=

n∑
i=1

M2

1 − σ

[
|ei(t)| − (1 − σ

′

(t))|ei(t − σ(t))|
]

≤

n∑
i=1

{ M2

1 − σ
|ei(t)| − M2|ei(t − σ(t))|

}
. (3.6)

From the Eqs (3.5) and (3.6), one has

V ′(t) = V ′1(t) + V ′2(t)

≤

n∑
i=1

{[
(k2 − λi) + |b − λi||λi| + M1 + c

n∑
j=1

a ji

]
|ei(t)| +

M2

1 − σ
|ei(t)|

+(l3 + 1 + λi − b)|ri(t)| − k1 exp{|ei(t)|} + l1|ri(t)|2 + l2 exp{|ri(t)|} + ϕ(t)
}
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=

n∑
i=1

{[
(k2 − λi) + |b − λi||λi| + M1 + c

n∑
j=1

a ji +
M2

1 − σ

]
|ei(t)|

+(l3 + 1 + λi − b)|ri(t)| − k1 exp{|ei(t)|} + l1|ri(t)|2 + l2 exp{|ri(t)|} + ϕ(t)
}

=

n∑
i=1

[
Ai|ei(t)| − k1 exp{|ei(t)|}

]
+

n∑
i=1

[
Bi|ri(t)| + l1|ri(t)|2

+l2 exp{|ri(t)|}
]
+ nϕ(t). (3.7)

Denote

K1(|ei(t)|) = Ai|ei(t)| − k1 exp{|ei(t)|},
G1(|ri(t)|) = Bi|ri(t)| + l1|ri(t)|2 + l2 exp{|ri(t)|}.

Then d[K1(|ei(t)|)]
d|ei(t)|

= Ai − k1 exp{|ei(t)|}. From d[K1(|ei(t)|)]
d|ei(t)|

= Ai − k1 exp{|ei(t)|}, from d[K1(|ei(t)|)]
d|ei(t)|

= 0, it
follows that when |ei(t)| < ln Ai

k1
,K′1(|ei(t)| > 0; when |ei(t)| > ln Ai

k1
, F′(|ei(t)|

< 0. As a result, we attain max{K1(|ei(t)|)} = K1(ln Ai
k1

) = Ai

[
ln Ai

k1
− 1

]
< 0. Thus

Ai|ei(t)| − k1 exp{|ei(t)|} ≤ 0. (3.8)

From G1(|ri(t)|) = Bi|ri(t)| + l1|ri(t)|2 + l2 exp{|ri(t)|}, one attains G′1(|r j(t)|) = Bi + 2l1|ri(t)| +
l2 exp{|ri(t)|},G′′1 (|ri(t)|) = 2l1 + l2 exp{|ri(t)|}. Since l2 < 0, thus, G(3)

1 (|ri(t)|) = l2 exp{|ri(t)|} < 0.
Then G′′1 (|ri(t)|) is deceasing. Hence G′′(|ri(t)|) < G′′(0) = 2l1 + l2 < 0. Then G′(|ri(t)|) is de-
creasing. As a result, G′1(|ri(t)|) < G′1(0) = Bi + l2 < 0. So, G1(|ri(t)|) is decreasing. Therefore,
G1(|ri(t)|) < G1(0) = l2 < 0. That is

B j|ri(t)| + l1|ri(t)|2 + l2 exp{|ri(t)|} < 0. (3.9)

Substituting (3.8) and (3.9) into (3.7), it yields

V ′(t) < nϕ(t). (3.10)

Integrating (3.10) over [0, t] gives

V(t) < V(0) + n
[

ln(t +
1
2

) − et+ 1
2 + ln 2 + e

1
2 − t

]
(t >

1
2

)

= V(0) + n(ln(t +
1
2

) − et+ 1
2 ) + n(ln 2 + e

1
2 − t). (3.11)

It is not difficult to compute that when t > V(0)
n + ln 2 + e

1
2 ,

V(0) + n(ln 2 + e
1
2 − t) < 0. (3.12)

According to Lemma 2.1, we have

ln(t +
1
2

) − et+ 1
2 < 0, t >

1
2
. (3.13)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3047–3069.



3054

Substituting (3.12) and (3.13) into (3.11), it follows that when t > t1 = max
{

1
2 ,

V(0)
n

+ ln 2 + e
1
2

}
,

0 ≤ V(t) ≤ 0, t ≥ t1.

That is lim
t→t2
|ei(t)| = 0, lim

t→t1
|ri(t)| = 0, |ei(t)| = 0, |ri(t)| = 0, t ≥ t1. In other words,

lim
t→t1
|ui(t) − xi(t)| = 0, |ui(t) − xi(t)| = 0, t ≥ t1;

lim
t→t1
|vi(t) − yi(t)| = 0, |vi(t) − yi(t)| = 0, t ≥ t1.

The proof of Theorem 3.1 is finished.
Theorem 3.2. Suppose that the condition (H1) is satisfied. Then the drive system (2.2) and the response
system (2.3) are finite-time synchronized under the controllers (3.3) in a finite time t2, where t2 =

max
{

2
3 ,

U(0)
n + ln 3 + 1

q +
1

p3p

}
, if the following conditions hold:

(H4)

0 < Li = 2(w1 − λi) + |b − λi||λi| + 1 + M1 +
M2

1 − σ
+ c

n∑
j=1

a ji < min{4, 4e − 2θ1};

(H5)

Ri = 2(w2 + λi − b) + 1 + |b − λi||λi| + M1 + M2 + c
n∑

j=1

ai j < 0.

Proof. We set up the following Lyapunov function:

U(t) = U1(t) + U2(t),

where U1(t) =
n∑

i=1
e2

i (t) +
n∑

i=1
r2

i (t),U2(t) =
n∑

i=1

M2
1−σ

∫ t

t−σ(t)
e2

i (s)ds.

According the system (3.1), assumption (H1) and the controllers (3.3), we have

dU1(t)
dt

=

n∑
i=1

{
2ei(t)e′i(t) + 2ri(t)r′i (t)

}
=

n∑
i=1

2ei(t)
{
− λiei(t) + ri(t) + Pi(t)

}
+

n∑
i=1

2ri(t)
{
(b − λi)λiei(t) + (λi − a)ri(t)

+h[xi(t), xi(t − σ(t)))] − h[ui(t), ui(t − σ(t)))] + c
n∑

j=1

ai je j(t) + Qi(t)
}

≤

n∑
i=1

{
2(w1 − λi)e2

i (t) − 2 exp{2|ei(t)|} + 2θ1|ei(t)| + e2
i (t) + r2

i (t) + 2(w2 +

λi − b)r2
i (t) + |b − λi||λi|[e2

i (t) + r2
i (t)] + 2|ri(t)| ·

∣∣∣h(xi(t), xi(t − σ(t)))

−h(ui(t), ui(t − σ(t)))
∣∣∣ + c

n∑
j=1

ai j[e2
j(t) + r2

i (t)] + 2θ3|ri(t)| + 2θ2 + ρ(t)
}

≤

n∑
i=1

{
2(w1 − λi)e2

i (t) − 2 exp{2|ei(t)|} + 2θ1|ei(t)| + e2
i (t) + r2

i (t) + 2(w2 + λi
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−b)r2
i (t) + |b − λi||λi|[e2

i (t) + r2
i (t)] + M1[e2

i (t) + r2
i (t)] + M2[e2

i (t − σ(t))

+r2
i (t)] + c

n∑
j=1

a ji[e2
i (t) + r2

i (t)] + 2θ3|ri(t)| + 2θ2 + ρ(t)
}

(3.14)

On the other side, we have

dU2(t)
dt

=

n∑
i=1

M2

1 − σ

∫ t

t−σ(t)
e2

i (s)ds

=

n∑
i=1

M2

1 − σ

[
e2

i (t) − (1 − σ
′

(t))e2
i (t − σ(t))

]
≤

n∑
i=1

[ M2

1 − σ
e2

i (t) − M2e2
i (t − σ(t))

]
. (3.15)

From the Eqs (3.14) and (3.15), one has

U′(t) = U′1(t) + U′2(t)

≤

n∑
i=1

{
2(w1 − λi)e2

i (t) − 2 exp{2|ei(t)|} + 2θ1|ei(t)| + e2
i (t) + r2

i (t)

+2(w2 + λi − b)r2
i (t) + |b − λi||λi|[e2

i (t) + r2
i (t)] + M1[e2

i (t) + r2
i (t)]

+M2[
1

1 − σ
e2

i (t) + r2
i (t)] + c

n∑
j=1

ai j[e2
j(t) + r2

i (t)] + 2θ3|ri(t)| + 2θ2 + ρ(t)
}

=

n∑
i=1

{[
2(w1 − λi) + |b − λi||λi| + 1 + M1 +

M2

1 − σ
+ c

n∑
j=1

a ji

]
e2

i (t)

+
[
2(w2 + λi − b) + 1 + |b − λi||λi| + M1 + M2 + c

n∑
j=1

ai j

]
r2

i (t)

−2 exp{2|ei(t)|} + 2θ1|ei(t)| + 2θ3|ri(t)| + 2θ2 + ρ(t)
}

=

n∑
i=1

[
Lie2

i (t) − 2 exp{2|ei(t)|} + 2θ1|ei(t)|}
]
+

n∑
i=1

[
Rir2

i (t) + 2θ3|ri(t)| + 2θ2

]
+nρ(t). (3.16)

Denote

K2(|ei(t)|) = Li|ei(t)|2 − 2 exp{2|ei(t)|} + 2θ1|ei(t)|,
G2(|ri(t)|) = Ri|ri(t)|2 + 2θ3|ri(t)| + 2θ2.

where |ei(t)| ∈ [0,+∞), |ri(t)| ∈ [0,+∞). It is obvious that K′2(|ei(t)|) =
dK2(|ei(t)|)

d|ei(t)|
= 2Li|ei(t)| −

4 exp{2|ei(t)|} + 2θ1 and K′′2 (|ei(t)|) =
dK2

2 (|ei(t)|)
d|ei(t)|2

= 2Li − 8 exp{2|ei(t)|}. Because of 0 < Li < 4, then
K′′2 (|ei(t)|) < 0. Thus K′2(|ei(t)|) is a monotonically decreasing continuous function in [0,∞).
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Because of θ1 > 2, 0 < Li < min{4, 4e−2θ1}, there is K′2(0) = −4+2θ1 > 0 and F′2(1
2 ) = Li−4e+2θ1 <

0. As a result, based on Zero-point theorem of monotonically continuous function, there exists a unique
zero point |e∗i (t)| ∈ (0, 1

2 ) of K′2(|ei(t)|) such that K′2(|e∗i (t)|) = 2Li|e∗i (t)| − 4 exp{2|e∗i (t)|} + 2θ1 = 0.
Regarding this equation of |e∗i (t)|, we have

2θ1 = 4 exp{2|e∗i (t)|} − 2Li|e∗i (t)|. (3.17)

Furthermore, from 0 < |e∗i (t)| < 1
2 , (3.9) and the assumption (H4), we have

K2(|e∗i (t)|) = Li|e∗i (t)|2 − 2 exp{2|e∗i (t)|} + 2θ1|e∗i (t)|
= Li|e∗i (t)|2 − 2 exp{2|e∗i (t)|} + (4 exp{2|e∗i (t)|} − 2Li|e∗i (t)|)|e∗i (t)|
= 2(2|e∗i (t)| − 1) exp{2|e∗i (t)|} − Li|e∗i (t)|2 < 0. (3.18)

Apparently,

K2(0) = −2 < 0; lim
|ei(t)|→+∞

K2(|ei(t)|) = −∞ < 0. (3.19)

From (3.18), (3.19), and Lemma 2.4, one has

max{K2(|ei(t)|)} < 0.

In addition, G′2(|ri(t)|) =
dG2(|ri(t)|)

d|ri(t)|
= 2Ri|ri(t)| + 2θ3. Based on G′2(|ri(t)|) = 0, it is easy to obtain

|r∗i (t)| = − θ3
Ri

. In other words, when 0 < |ri(t)| < |r∗i (t)|,G′2(|ri(t)|) > 0,G2(|ri(t)|) is monotone increasing,
and when |r∗i (t)| < |ri(t)| < +∞,G′2(|ri(t)|) < 0,G2(|ri(t)|) is monotone decreasing. Therefore, we
conclude that |r∗i (t)| is the unique extreme point of G2(|ri(t)|), and the extreme value is

G2(|r∗i (t)|) = Ri|r∗i (t)|2 + 2θ3|r∗i (t)| + 2θ2

= 2θ2 −
θ2

3

Ri
< 0. (3.20)

Furthermore,

G2(0) = 2θ2 < 0; lim
|ri(t)|→+∞

G2(|ri(t)|) = −∞ < 0. (3.21)

Similarity, based on (3.20), (3.21) and Lemma 2.4, one has

max{G2(|ri(t)|)} < 0.

Substituting K2(|ei(t)|) < 0 and G2(|ri(t)|) < 0 into (3.16), it yields

U′(t) < nρ(t). (3.22)

Integrating (3.22) over [0, t] gives

U(t) < U(0) + n
[

ln(t +
1
3

) −
1
p

(t +
1
3

)p −
1
q
+ ln 3 +

1
q
+

1
p3p − t

]
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= U(0) + n
[
ln(t +

1
3

) −
1
p

(t +
1
3

)p −
1
q

]
+ n

(
ln 3 +

1
q
+

1
p3p − t

)
. (3.23)

Evidently, when t > U(0)
n + ln 3 + 1

q +
1

p3p ,

U(0) + n(ln 3 +
1
q
+

1
p3p − t) < 0. (3.24)

According to Lemma 2.2, when t > 2
3 , the following inequality holds:

ln(t +
1
3

) −
1
p

(t +
1
3

)p −
1
q
< 0. (3.25)

Substituting (3.24) and (3.25) into (3.23), it follows that when t > t2 = max
{

2
3 ,

U(0)
n

+ ln 3 + 1
q +

1
p3p

}
,

0 ≤ U(t) ≤ 0, t ≥ t2.

That is lim
t→t2
|ei(t)| = 0, lim

t→t2
|r j(t)| = 0, |ei(t)| = 0, |ri(t)| = 0, t ≥ t2. In other words,

lim
t→t2
|ui(t) − xi(t)| = 0, |ui(t) − xi(t)| = 0, t ≥ t2;

lim
t→t2
|vi(t) − yi(t)| = 0, |vi(t) − yi(t)| = 0, t ≥ t2.

The proof of Theorem 3.2 is finished.
Theorem 3.3. Presume that (H1) holds. Then the drive system (2.2) and the response system (2.3) are
finite-time synchronized under the controllers (3.4) in a finite time t3, where t3 = max{ 1

3n +
2−3 ln 2
9V(0) ,

1
2 },

if the following conditions hold:
(H6)

Ci = (k4 − λi) + |b − λi||λi| + M1 + c
n∑

j=1

a ji +
M2

1 − σ
< 0;

(H7)

Di = l4 + 1 + λi − b < −
√

l2
5 + l2

6.

Proof. We establish the same Lyapunov function as follows:

V(t) = V1(t) + V2(t),

where, V1(t) =
n∑

i=1
|ei(t)| +

n∑
i=1
|ri(t)|,V2(t) =

n∑
i=1

M2
1−σ

∫ t

t−σ(t)
|ei(s)|ds.

From the proof of theorem 3.1, we get

V ′(t) = V ′1(t) + V ′2(t)

≤

n∑
i=1

{[
(k4 − λi) + |b − λi||λi| + M1 + c

n∑
j=1

a ji +
M2

1 − σ

]
|ei(t)|

+(l4 + 1 + λi − b)|ri(t)| − k3|ei(t)|3 + l6 sin(|ri(t)|) + l5 cos(|ri(t)|) + ψ(t)
}
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=

n∑
i=1

[
Ci|ei(t)| − k3|ei(t)|3

]
+

n∑
i=1

[
Di|ri(t)| + l6 sin(|ri(t)|)

+l5 cos(|ri(t)|)
]
+ nψ(t). (3.26)

Let

K3(|ei(t)|) = Ci|ei(t)| − k3|ei(t)|3,
G3(|ri(t)|) = Di|ri(t)| + l6 sin(|ri(t)|) + l5 cos(|ri(t)|).

Then we have d[K3(|ei(t)|)]
dt = Ci − 3k3|ei(t)|2. From d[K3(|ei(t)|)]

dt = Ci − 3k3|ei(t)|2 = 0, it yields |ei(t)| =√
Ci
3k3
. Thus, when |ei(t)| <

√
Ci
3k3
,K′3(|ei(t)|) > 0; when |ei(t)| >

√
Ci
3k3
,K′3(|ei(t)|) < 0. Hence,

K3(|ei(t)|) ≤ max{K3(|ei(t)|)} = K3

(√ Ci

3k3

)
=

2Ci

3

√
Ci

3k3
< 0. (3.27)

From the definition of G3(|r j(t)|), we attain

G′3(|ri(t)|) = Di + l6 cos(|ri(t)|) − l5 sin(|ri(t)|)

= Di +

√
l2
5 + l2

6

[ l6√
l2
5 + l2

6

cos(|ri(t)|) −
l5√

l2
5 + l2

6

sin(|ri(t)|)
]

= Di +

√
l2
5 + l2

6 cos(|ri(t)| + β)

≤ Di +

√
l2
5 + l2

6 ≤ 0,

where, cos β = l6√
l25+l26

, sin β = l5√
l25+l26

. Thus G′3(|ri(t)|) < 0. Therefore, G3(|ri(t)|) is decreasing. So

G3(|ri(t)|) < G3(0) = l5 < 0. (3.28)

Substituting (3.27) and (3.28) into (3.26), it yields

V ′(t) <
n∑

i=1

[
K3(|ei(t)|) +G3(|ri(t)|)

]
+ nψ(t) < nψ(t). (3.29)

Integrating (3.29) over [0, t] gives

V(t) < V(0) + n
(
2 −

8
2t + 3

− ln(2t + 1) + ln 2
)

+n
(
8
3
− 2 − ln 2 − 3V(0)t

)
, (t >

1
2

)

= n
(4t − 2
2t + 3

− ln(2t + 1) + ln 2
)
+ (

2
3
− ln 2)n + (1 − 3nt)V(0). (3.30)
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According to Lemma 2.3, we acquire the following result:

4t − 2
2t + 3

− ln(2t + 1) + ln 2 < 0, t >
1
2
. (3.31)

It is obvious that when t > 1
3n +

2−3 ln 2
9V(0) ,

(
2
3
− ln 2)n + (1 − 3nt)V(0) < 0. (3.32)

Substituting (3.31) and (3.32) into (3.30), it yields that when t > t3 = max{ 1
3n +

2−3 ln 2
9V(0) ,

1
2 },

0 ≤ V(t) ≤ 0, t > t2.

That is lim
t→t3
|ei(t)| = 0, lim

t→t3
|ri(t)| = 0, |ei(t)| = 0, |ri(t)| = 0, t > t3. Accordingly,

lim
t→t3
|ui(t) − xi(t)| = 0, |ui(t) − xi(t)| = 0, t > t3;

lim
t→t3
|vi(t) − yi(t)| = 0, |vi(t) − yi(t)| = 0, t > t3.

The proof of Theorem 3.3 is finished.
Remark 2. The method in finite-time synchronization used in the paper is completely different from
those in [59, 61–66].
Remark 3. Without applying the finite-time stability theorems used in [36–45, 52, 53, 60], integral
inequalities used in [61–66] and LMI method, by using three novel inequalities in Lemmas 2.1–2.3, we
obtain three criteria to assure the finite-time synchronization for the discussed drive-response complex
dynamical networks. The advantage of using three inequalities is to obtain the finite-time T without
using the complicated finite-time stability theorems.

4. Numerical examples

In this part, to present our results intuitively, we provide three numerical examples.
Example 4.1. We take into consideration the system (2.2), the response system (2.3) and the error

system (3.1) with the controllers (3.2) for i = 1, 2, where b = 15, λ1 = 2, λ2 = 3, c = 1, a11 = a22 =

0, a12 = a21 = 2; k1 = 10 > 0, k2 = −15, l1 = 2, l2 = −35 < 0, 2l1 + l2 = −31 < 0, l3 = 3, ϕ(t) =
2

2t+1 − et+ 1
2 − 1, p1(t) = sin t, p2(t) = 3 cos t, h(xi(t), xi(t − σ(t))) = |xi(t)| + |xi(t − σ(t))|, σ(t) = 0.3 sin t.

Moreover, the initial conditions of drive-response systems are defined as: x1(0) = 14.12, x2(0)
= 23.61, y1(0) = 12.015, y2(0) = −30.253, u1(0) = −46.892, u2(0) = 27.35, v1(0) = 52.637, v2(0)
= 19.54. Obviously, the assumptions (H2), (H3) is hold:

0 < A1 = (k2 − λ1) + |b − λ1||λ1| + M1 + c
n∑

j=1

a j1 +
M2

1 − σ
= 13.4286 < ek1 = 27.1828,

0 < A2 = (k2 − λ2) + |b − λ2||λi| + M1 + c
n∑

j=1

a j2 +
M2

1 − σ
= 22.4286 < ek1 = 27.1828,
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B1 = l3 + 1 + λ1 − b = −9 < −l2 = 35,

B2 = l3 + 1 + λ2 − b = −8 < −l2 = 35.

Based on the introduction of the inequality in Lemma 2.1, we propose the controller (3.2), which
is less conservative than those in the literature [35, 36, 44–49, 51–53]. It is not difficult to verify
that the parameters in the above papers do not satisfy the conditions of finite-time synchronization.
Therefore, the finite-time synchronization between the drive system (2.2) and response system (2.3)
can’t be validated with the results in [35–53, 60]. It is easy to know that (H1) − (H3) in Theorem 3.1
in our paper are satisfied. Hence, according to Theorem 3.1, the drive system (2.2) and the response
system (2.3) are finite-time synchronized under the controllers (3.2).

The trajectories of xi(t), ui(t), yi(t), vi(t) and errors ei(t), ri(t), i = 1, 2 are shown with a controller
(3.2) in the following Figures 1–3.
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Figure 1. The curves of the x1(t), x2(t), u1(t), u2(t) in the Example 4.1.

0 0.5 1 1.5 2

t

-40

-20

0

20

40

60

y
1
(t)

v
1
(t)

y
2
(t)

v
2
(t)

Figure 2. The curves of the y1(t), y2(t), v1(t), v2(t) in the Example 4.1.
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Figure 3. The curves of the e1(t), e2(t), r1(t), r2(t) in the Example 4.1.

Example 4.2. We focus on the drive system (2.2), the response system (2.3) and the error system
(3.1) with the controllers (3.3) for i = 1, 2. The value of parameters are chosen as: b = 7, λ1 = 4.2, λ2 =

5, c = 3, a11 = a22 = 0, a12 = a21 = 3.2; w1 = −5.8 < 0,w2 = −40 < 0, θ1 = 2.2 > 2, θ3 = 4 > 0, θ2 =

−15 <
θ2

3
2Ri
, p = 2; ρ(t) = 3

3t+1 − t + 1
3

p−1
− 1, p1(t) = −0.8 cos t, p2(t) = 1.2 sin t, h(xi(t), xi(t − σ(t))) =

0.4|xi(t)| + sin[xi(t − σ(t))], σ(t) = 0.5 sin t.

Here, we take the initial conditions of systems as follows: x1(0) = 2394.12, x2(0) =
−1124.61, y1(0) = −7421.15, y2(0) = −1701.25, u1(0) = −4104.892, u2(0) = −3562.35, v1(0) =
−3885.637, v2(0) = −1651.54. Based on simple calculation, we find that the criteria in Theorem
3.2 is satisfied.

0 < L1 = 2(w1 − λ1) + |b − λ1||λ1| + 1 + M1 +
M2

1 − σ
+ c

n∑
j=1

a j1 = 3.76 < min{4, 4e − 2θ1};

0 < L2 = 2(w1 − λ2) + |b − λ2||λ2| + 1 + M1 +
M2

1 − σ
+ c

n∑
j=1

a j2 = 0.40 < min{4, 4e − 2θ1};

R1 = 2(w2 + λ1 − b) + 1 + |b − λ1||λ1| + M1 + M2 + c
n∑

j=1

a1 j = −61.84 < 0;

R2 = 2(w2 + λ2 − b) + 1 + |b − λ2||λ2| + M1 + M2 + c
n∑

j=1

a2 j = −62.00 < 0.

The figures of xi(t), ui(t), yi(t), vi(t) and errors ei(t), ri(t), i = 1, 2 with controller (3.3) are depicted in
Figures 4–6.
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Figure 4. The curves of the x1(t), x2(t), u1(t), u2(t) in the Example 4.2.
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Figure 5. The curves of the y1(t), y2(t), v1(t), v2(t) in the Example 4.2.
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Figure 6. The curves of the e1(t), e2(t), r1(t), r2(t) in the Example 4.2.

Example 4.3. We take into consideration the system (2.2), the response system (2.3) and the error
system (3.1) with the controllers (3.2), the time-varying delay σ(t) is set randomly as 0.7 sin t − 0.4,
The nonlinear restoring force is chosen as h(xi(t), xi(t −σ(t))) = 0.2 sin[xi(t)] + sin[xi(t −σ(t))], which
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is satisfied with assumption (H1). Then the damping constant, coupling strength and rest parameters
are represented as: b = 12, λ1 = 3.8, λ2 = −3, c = 5, a11 = a22 = 0, a12 = a21 = 4; k3 = −32 < 0, k4 =

−75 < 0, l4 = −4, l5 = −3.5 < 0, l6 = 8, ψ(t) = 16
(2t+3)2 −

2
2t+1 − 3V(0), p1(t) = 5, p2(t) = −4.

The initial conditions is defined as: x1(0) = 5.9, x2(0) = −4.63, y1(0) = −30.48, y2(0) =
−13.4, u1(0) = 4.5, u2(0) = −3.13, v1(0) = −13.57, v2(0) = −88.95. By calculation, one has

C1 = (k4 − λ1) + |b − λ1||λ1| + M1 + c
n∑

j=1

a j1 +
M2

1 − σ
= −25.44 < 0,

C2 = (k4 − λ2) + |b − λ2||λ2| + M1 + c
n∑

j=1

a j2 +
M2

1 − σ
= −4.80 < 0,

D1 = l4 + 1 + λ1 − b = −11.20 < −
√

l2
5 + l2

6 = −8.7321,

D2 = l4 + 1 + λ2 − b = −18 < −
√

l2
5 + l2

6 = −8.7321.

The figures of xi(t), ui(t), yi(t), vi(t) and synchronous error ei(t), r(t) are plotted in Figures 7–9.
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Figure 7. The curves of the x1(t), x2(t), u1(t), u2(t) in the Example 4.3.
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Figure 8. The curves of the y1(t), y2(t), v1(t), v2(t) in the Example 4.3.
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Figure 9. The curves of the e1(t), e2(t), r1(t), r2(t) in the Example 4.3.

5. Conclusions

In our paper, we are concentrated on the finite-time synchronization of a type of delayed multinon-
identical coupled complex dynamical networks. Without using Lyapunov stability theory, graph theory
and finite-time stability theorem, by combining the Zero-point theorem approach with novel differen-
tial inequality and designing three classes of new controllers. Immediately, we construct three different
criteria to guarantee the finite-time synchronization between the drive system and the response system.
Our results and method are different from those in existing papers. In the future, we will consider the
fixed-time synchronization of delayed multinonidentical coupled complex dynamical networks.
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