The aim of this paper is to combine the innovative concept of single valued neutrosophic sets and ordered semirings. It studies ordered semirings by the properties of their single valued neutrosphic subsets. In this regard, we define single valued neutrosophic $ (m, n) $-ideals (SVN-$ (m, n) $-ideals) of ordered semirings. First, we illustrate our new definition by non-trivial examples. Second, we study these SVN-$ (m, n) $-ideals under different operations of SVNS. Finally, we find a relationship between the $ (m, n) $-ideals of ordered semirings and level sets by finding a necessary and sufficient condition for an SVNS of an ordered semiring $ R $ to be an SVN-$ (m, n) $-ideal of $ R $.
Citation: Saba Al-Kaseasbeh, Madeline Al Tahan, Bijan Davvaz, Mariam Hariri. Single valued neutrosophic $ (m, n) $-ideals of ordered semirings[J]. AIMS Mathematics, 2022, 7(1): 1211-1223. doi: 10.3934/math.2022071
The aim of this paper is to combine the innovative concept of single valued neutrosophic sets and ordered semirings. It studies ordered semirings by the properties of their single valued neutrosphic subsets. In this regard, we define single valued neutrosophic $ (m, n) $-ideals (SVN-$ (m, n) $-ideals) of ordered semirings. First, we illustrate our new definition by non-trivial examples. Second, we study these SVN-$ (m, n) $-ideals under different operations of SVNS. Finally, we find a relationship between the $ (m, n) $-ideals of ordered semirings and level sets by finding a necessary and sufficient condition for an SVNS of an ordered semiring $ R $ to be an SVN-$ (m, n) $-ideal of $ R $.
[1] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subgroups, Appl. Math. Sci., 11 (2017), 2011–2021. doi: 10.12988/ams.2017.64115. doi: 10.12988/ams.2017.64115 |
[2] | M. Al-Tahan, B. Davvaz, On $(m, n)$-hyperideals in ordered semihyperrings: Applications to ordered semirings, J. Algebra Appl., 2021. doi: 10.1142/S0219498822501018. doi: 10.1142/S0219498822501018 |
[3] | M. Al-Tahan, B. Davvaz, M. Parimala, A note on single valued neutrosophic sets in ordered groupoids, IJNS, 10 (2020), 73–83. |
[4] | M. Al-Tahan, B. Davvaz, Some results on single valued neutrosophic (weak) polygroups, IJNS, 2 (2020), 38–46. doi: 10.5281/zenodo.3719350. doi: 10.5281/zenodo.3719350 |
[5] | M. Al-Tahan, B. Davvaz, On single valued neutrosophic sets and neutrosophic $\aleph$-structures: Applications on algebraic structures (hyperstructures), IJNS, 3 (2020), 108–117. doi: 10.5281/zenodo.3750220. doi: 10.5281/zenodo.3750220 |
[6] | M. Al-Tahan, F. Smarandache, B. Davvaz, NeutroOrderedAlgebra: Applications to semigroups, Neutrosophic Sets Syst., 39 (2021), 133–147. |
[7] | H. Akara, M. Al-Tahan, J. Vimala, Some results on single valued neutrosophic bi-ideals in ordered semigroups, Neutrosophic Sets Syst., 45 (2021), 181–196. |
[8] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. doi: 10.1016/S0165-0114(86)80034-3. doi: 10.1016/S0165-0114(86)80034-3 |
[9] | R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Set. Syst., 35 (1990), 121–124. doi: 10.1016/0165-0114(90)90025-2. doi: 10.1016/0165-0114(90)90025-2 |
[10] | J. J. Chen, S. G. Li, S. Q. Ma, X. P. Wang, m-Polar fuzzy sets: An extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 416530. doi: 10.1155/2014/416530. doi: 10.1155/2014/416530 |
[11] | B. Davvaz, S. Subiono, M. Al-Tahan, Calculus of meet plus hyperalgebra (tropical semihyperrings), Commun. Algebra, 48 (2020), 2143–2159. doi: 10.1080/00927872.2019.1710178. doi: 10.1080/00927872.2019.1710178 |
[12] | B. Davvaz, I. Cristea, Fuzzy algebraic hyperstructures-An introduction, Springer, 2015. |
[13] | K. Głazek, A guide to the literature on semirings and their applications in mathematics and information sciences, Dordrecht: Springer, 2002. doi: 10.1007/978-94-015-9964-1. |
[14] | J. S. Golan, Semirings and their applications, Dordrecht: Kluwer Academic publisher, 1999. |
[15] | A. Mahboob, B. Davvaz, N. M. Khan, Fuzzy $(m, n)$-ideals in semigroups, Comput. Appl. Math., 38 (2019), 189. doi: 10.1007/s40314-019-0930-5. doi: 10.1007/s40314-019-0930-5 |
[16] | D. Mandal, Fuzzy ideals and fuzzy interior ideals in ordered semirings, Fuzzy Inform. Eng., 6 (2014) 101–114. doi: 10.1016/j.fiae.2014.06.008. doi: 10.1016/j.fiae.2014.06.008 |
[17] | S. Omidi, B. Davvaz, Basic notions and properties of ordered semihyperrings, Categ. Gen. Algebraic, 4 (2016), 43–62. |
[18] | F. Smarandache, Neutrosophy, neutrosophic probability, set, and logic, USA: American Research Press, 1998. doi: 10.5281/zenodo.57726. |
[19] | F. Smarandache, Neutrosophic set–A generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287–297. |
[20] | F. Smarandache, A unifying field in logics: Neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability and statistics, USA: InfoLearnQuest, 2007. |
[21] | H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, B. Am. Math. Soc., 40 (1934), 916–920. |
[22] | H. B. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman, Single valued neutrosophic sets, Review of the Air Force Academy, 1 (2010), 10–14. |
[23] | L. A. Zadeh, Fuzzy Sets, Inform. Contr., 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X. doi: 10.1016/S0019-9958(65)90241-X |