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condition for an SVNS of an ordered semiring R to be an SVN-(m, n)-ideal of R.
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1. Introduction

A semiring is a natural generalization of ring and it has many applications to various fields such as
optimization theory, max/min algebra, algebra of formal process, combinatorial optimization, automata
theory, etc. Semirings were introduced explicitly by Vandiverin [21] in 1934. By considering the ring
of rational numbers (Q,+, ·) that plays an important role in ring theory, we get the subset (Q+ ∪ {0},+)
of all non-negative rational numbers is an abelian additive semigroup which is closed under the usual
multiplication of rational numbers, i.e., (Q+ ∪ {0},+, ·) forms a semiring.

Fuzzy set, a generalization of the crisp set, was introduced in 1965 by Zadeh [23] where he assigned
to each set’s element a degree of belongingness (truth value: “t”) with 0 ≤ t ≤ 1. Intuitionistic fuzzy
set, as an extension of the fuzzy set, was introduced in 1986 by Atanassov [8] where he assigned to
each set’s element a degree of belongingness (truth value: “t”) and a degree of non-belongingness
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(falsity value: “ f ”) with 0 ≤ t, f ≤ 1, 0 ≤ t + f ≤ 1. Neutrosophic set, as an extension of intuitionistic
fuzzy set, was introduced in 1998 by Smarandache [18] where he assigned to each set’s element a
truth value “T”, indeterminacy value “I”, and falsity value “F” with 0 ≤ T, I, F ≤ 1. For detailed
information about neutrosophic sets, we refer to [19, 20].

The connection between algebraic structures (hyperstructures) and each of fuzzy, intuitionistic
fuzzy, and neutrosophic sets have been of great interest to many algebraists. Different concepts were
introduced and studied. For more details, we refer to [3–7] for neutrosophic algebraic structures
(hyperstructures) and to [1, 9, 10, 12, 15, 16] for fuzzy algebraic structures (hyperstructures).

In [3], Al-Tahan et al. discussed single valued neutrosophic (SVN) subsets of ordered groupoids
and in [7], Akara et al. studied SVN subsets of ordered semigroups. In 2019, Mahboub et al. [15]
studied fuzzy (m, n)-ideals in semigroups. Our paper is concerned about SVN-(m, n)-ideals in ordered
semirings and it is structured as follows: In Section 2, we present basic definitions and examples on
single valued neutrosophic sets and their operations. In Section 3, we discuss some results on (m, n)-
ideals in ordered semirings. Finally in Section 4, we define SVN-(m, n)-ideals in ordered semirings,
study their properties, present non-trivial examples on them, and find a relationship between (m, n)-
ideals of ordered semirings and level sets.

2. Definitions and examples on SVNSs

In this section, we present some preliminaries related to single valued neutrosophic sets (SVNSs)
and some of their operations.

Definition 2.1. [22] Let U be a non-empty space of elements. A single valued neutrosophic set
(SVNS) A on U is characterized by the functions: TA (truth-membership), IA

(indeterminacy-membership), and FA (falsity-membership). Here, the range of each of these functions
is a subset of the unit interval and A is denoted as follows:

A =
{ x
(TA(x), IA(x), FA(x))

: x ∈ U
}
.

Definition 2.2. [6] Let U be a non-empty set, A an SVNS over U, and 0 ≤ α1, α2, α3 ≤ 1. Then the
(α1, α2, α3)-level set of A is defined as follows:

L(α1,α2,α3) = {x ∈ U : TA(x) ≥ α1, IA(x) ≤ α2, FA(x) ≤ α3}.

Definition 2.3. [22] Let U be a non-empty set and A, B be SVNSs over U defined as follows.

A =
{ x
(TA(x), IA(x), FA(x))

: x ∈ U
}
, B = {

x
(TB(x), IB(x), FB(x))

: x ∈ U
}
.

Then

(1) A is called a single valued neutrosophic subset of B (A ⊆ B) if for every x ∈ U, we have TA(x) ≤
TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x).
Moreover, A and B are said to be equal single valued neutrosophic sets (A = B) if A is a single
valued neutrosophic subset of B and B is a single valued neutrosophic subset of A.
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(2) The intersection of A and B is defined to be the SVNS over U:

A ∩ B =
{ x
(TA∩B(x), IA∩B(x), FA∩B(x))

: x ∈ U
}
.

Here, TA∩B(x) = TA(x)∧TB(x), IA∩B(x) = IA(x)∨ IB(x), and FA∩B(x) = FA(x)∨FB(x) for all x ∈ U.
(3) The union of A and B is defined to be the SVNS over U:

A ∪ B =
{ x
(TA∪B(x), IA∪B(x), FA∪B(x))

: x ∈ U
}
.

Here, TA∪B(x) = TA(x)∨TB(x), IA∪B(x) = IA(x)∧ IB(x), and FA∪B(x) = FA(x)∧FB(x) for all x ∈ U.

Example 1. Let U = {m0,m1,m2} and A1, A2 be SVNS over U defined as follows.

A1 =
{ m0

(0.67, 0.64, 0.45)
,

m1

(0.83, 0.54, 0.32)
,

m2

(0.12, 0.75, 1)

}
,

A2 =
{ m0

(0.89, 0.01, 0.7)
,

m1

(1, 0, 0.76)
,

m2

(0.99, 0.53, 0.763)
}.

Then the SVNSs A1 ∪ A2 and A1 ∩ A2 over U are as follows.

A1 ∪ A2 =
{ m0

(0.89, 0.01, 0.45)
,

m1

(1, 0, 0.32)
,

m2

(0.99, 0.53, 0.763)

}
,

A1 ∩ A2 =
{ m0

(0.67, 0.64, 0.7)
,

m1

(0.83, 0.54, 0.76)
,

m2

(0.12, 0.75, 1)

}
.

Definition 2.4. Let X,Y be non-empty sets, f : X → Y a function, and A be an SVNS over Y defined
as follows.

A =
{ y
(TA(y), IA(y), FA(y))

: y ∈ Y
}
.

Then f −1(A) is a single valued neutrosophic set over X defined as follows.

f −1(A) =
{ x
(T f −1(A)(x), I f −1(A)(x), F f −1(A)(x))

: x ∈ X
}
.

Here, T f −1(A)(x) = TA( f (x)), I f −1(A)(x) = IA( f (x)), and F f −1(A)(x) = FA( f (x)).

Definition 2.5. Let X,Y be non-empty sets, A, B be SVNSs over X,Y respectively defined as follows.

A =
{ x
(TA(x), IA(x), FA(x)

: x ∈ X
}
, B =

{ y
(TA(y), IA(y), FA(y))

: y ∈ Y
}
.

Then A × B is an SVNS over X × Y defined as follows.

A × B =
{ (x, y)
(TA×B((x, y)), IA×B((x, y)), FA×B((x, y)))

: x ∈ X, y ∈ Y
}
.

Here, TA×B((x, y)) = TA(x) ∧ TB(y), IA×B((x, y)) = IA(x) ∨ IB(y), and FA×B((x, y)) = FA(x) ∨ FB(y).

3. (m, n)-ideals of ordered semirings

In this section, we deal with ordered semirings by presenting some results related to their (m, n)-
ideals. For more details about (ordered) semirings, we refer to the books [13, 14].
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Definition 3.1. [14] Let R be a non-empty set with binary operations “+” and “·”. Then (R,+, ·) is
called a semiring if the following conditions hold for all a, b, c ∈ R:

(1) (R,+) is an abelian semigroup with identity “0”;
(2) (R, ·) is a semigroup with “0” as bilaterally absorbing element (i.e. a · 0 = 0 · a = 0);
(3) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c.

A semiring (R,+, ·) is called semifield if (R, ·) is a commutative semigroup with unity “1”, and for
every non-zero element r1 ∈ R, there exists r2 ∈ R with r1 · r2 = 1.

Definition 3.2. [13] Let (R,+, ·) be a semiring with 0 ∈ R and “≤” be a partial order on R. Then
(R,+, ·,≤) is called an ordered semiring if the following conditions are satisfied for all x, y, a ∈ R.

(1) If x ≤ y then a + x ≤ a + y;
(2) If x ≤ y then a · x ≤ a · y and x · a ≤ y · a for all 0 ≤ a.

Remark 1. Every semiring R is an ordered semiring under the trivial order (i.e., u ≤ v if and only if
u = v for all u, v ∈ R).

Example 2. [11] Let Q+∪{0} be the set of non-negative rational numbers, R be the set of real numbers,
and “≤” be the usual order of real numbers. Then (Q+∪{0},+, ·,≤) and (R∪{±∞},∨,∧,≤) are examples
of infinite ordered semirings. Here “∧” and “∨” denote the minimum and maximum respectively.

Example 3. Let R be the set of real numbers. Then (R ∪ {−∞},∨,+,≤) is an ordered semifield.

Example 4. [16] Let “⊕” and “�” be the operations defined on the unit interval [0, 1] as follows: For
all x, y ∈ [0, 1],

x ⊕ y = x ∨ y and x � y = (x + y − 1) ∨ 0.

Then ([0, 1],⊕,�,≤) is an ordered semiring (with “0” as a zero element) under the usual order of real
numbers. Moreover, it is not an ordered semifield.

We can present finite semirings by means of Cayley’s tables.

Example 5. Let M = {0, t1, t2} and define (M,⊕,�) by the following tables.

⊕ 0 t1 t2

0 0 t1 t2

t1 t1 t1 t2

t2 t2 t2 t2

� 0 t1 t2

0 0 0 0
t1 0 0 0
t2 0 0 0

Then (M,⊕,�) is a semiring. By defining the partial order “≤” on M as follows

≤= {(0, 0), (0, t1), (0, t2), (t1, t1), (t1, t2), (t2, t2)},

we get that (M,⊕,�) is a commutative ordered semiring.
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Example 6. Let N = {0, 1, 2, 3} and define (N,�,�) by the following tables.

� 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 2
3 3 3 2 2

� 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 1 2 3
3 0 1 2 3

Then (N,�,�) is a semiring. By defining the partial order “≤” on N as follows

≤= {(0, 1), (0, 1), (1, 1), (2, 2), (2, 3), (3, 3)},

we get that (N,�,�,≤) is an ordered semiring.

Definition 3.3. Let (R,+, ·,≤) be an ordered semiring and S , ∅ ⊆ R. Then S is a subsemiring of R if
the following conditions hold.

(1) 0 ∈ S ;
(2) S + S ⊆ S and S 2 ⊆ S ;
(3) (S ] = {x ∈ R : x ≤ s for some s ∈ S } ⊆ S .

Example 7. Let (N,�,�,≤) be the ordered semiring of Example 6. Then {0, 1} is a subsemiring of N.

Ideals play an important role in semiring theory. Some generalizations of ideals were established
so that one can study a semiring by the properties of its (generalized) ideals.

Definition 3.4. Let (R,+, ·,≤) be an ordered semiring, I a subsemiring of R, and m, n be non-negative
integers with (m, n) , (0, 0). Then I is:

(1) a left ideal of R if RI ⊆ I.
(2) a right ideal of R if IR ⊆ I.
(3) m a bi-ideal of R if IRI ⊆ I.
(4) an (m, n)- ideal of R if ImRIn ⊆ I.

Remark 2. Let (R,+, ·,≤) be an ordered semiring and I ⊆ R. Then the following statements hold.

(1) If I is an ideal of R then I is a left (right) ideal, bi-ideal, and an (m, n)-ideal of R for all m, n ≥ 1.
(2) If I is a left ideal of R and n ≥ 1 then I is a (0, n)-ideal of R.
(3) m If I is a right ideal of R and m ≥ 1 then I is an (m, 0)-ideal of R.
(4) m If I is an (m, n)-ideal of R and s ≥ m, t ≥ n then I is an (s, t)-ideal of R.

Proposition 3.5. Let (R,+, ·,≤) be an ordered semifield, I , ∅ ⊆ R, and m, n be non-negative integers
with (m, n) , (0, 0). If I is an (m, n)-ideal of R then I = {0} or I = R. Moreover, I = {0} is an
(m, n)-ideal of R if and only if ({0}] = {0}.

Proof. Let I , {0} be an (m, n)-ideal of R. Since R is commutative, it follows that I is an (m+n, 0)-ideal
of R. Let x , 0 ∈ I. Then 1 = x−1 . . . x−1︸      ︷︷      ︸

m+n times

xm+n ∈ I. For any r ∈ R, we have r = 1 . . . 1︸︷︷︸
m+n times

r ∈ I. Therefore,

I = R.
It is clear that I = {0} is an (m, n)-ideal of R if and only if ({0}] = {0}. �

AIMS Mathematics Volume 7, Issue 1, 1211–1223.



1216

Example 8. Let (R ∪ {−∞},∨,+,≤) be the ordered semifield in Example 3 and m, n be non-negative
integers with (m, n) , (0, 0). Proposition 3.5 asserts that {−∞} and R are the only (m, n)-ideals of
R ∪ {−∞}.

Definition 3.6. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be ordered semirings and φ : R1 → R2 be a
function. Then φ is an ordered semiring homomorphism if the following conditions hold for all r, s ∈
R1.

(1) φ(r +1 s) = φ(r) +2 φ(s);
(2) φ(r ·1 s) = φ(r) ·2 φ(s);
(3) If r ≤1 s then φ(r) ≤2 φ(s).

If φ is a bijective ordered semiring homomorphism then φ is an ordered semiring isomorphism and
R1 and R2 are said to be isomorphic ordered semirings.

Theorem 3.7. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be ordered semirings. Then (R1 × R2,+, ·,≤) is an
ordered semiring, where “+”, “·”, and “≤” is defined as follows for all (r, s), (r′, s′) ∈ R1 × R2.

((r, s) + (r′, s′) = (r +1 r′, s + s′), (r, s) · (r′, s′) = (r ·1 r′, s ·2 s′),

(r, s) ≤ (r′, s′) if and only if r ≤1 r′ and s ≤2 s′.

4. SVN-(m, n)-ideals in ordered semirings

In this section, we define SVN-(m, n)-ideals of ordered semirings and present some related non-
trivial examples. Furthermore, we study various properties of them and find a relationship between
their level sets and the (m, n)-ideals.

Notation 1. Let U be a non-empty set, x, y ∈ U, and A be an SVNS over U. Then NA(x) ≥ NA(y) is
equivalent to TA(x) ≥ TA(y), IA(x) ≤ IA(y), FA(x) ≤ FA(y).

Definition 4.1. Let (R,+, ·,≤) be an ordered semiring and A an SVNS on R. Then A is an SVN-
subsemiring of R if the following conditions hold for all x, y ∈ R.

(1) NA(x + y) ≥ NA(x) ∧ NA(y);
(2) NA(x · y) ≥ NA(x) ∧ NA(y);
(3) If x ≤ y then NA(x) ≥ NA(y).

Definition 4.2. Let (R,+, ·,≤) be an ordered semiring and A an SVNS on R. Then A is an SVN-left
(right) ideal of R if the following conditions hold for all x, y ∈ R.

(1) NA(x + y) ≥ NA(x) ∧ NA(y);
(2) NA(x · y) ≥ NA(y) (respectively NA(x · y) ≥ NA(x));
(3) If x ≤ y then NA(x) ≥ NA(y).

Moreover, A is an SVN-ideal of R if it is both: an SVN-left ideal of R and an SVN-right ideal of R.

Example 9. Let ([0, 1],⊕,�,≤) be the ordered semiring of Example 4 and A be the SVNS on [0, 1]
defined as follows:

NA(x) =

(0.6, 0.3, 0.2) if 0 ≤ x ≤ 0.5;
(0.3, 0.4, 0.7) otherwise.

Then A is an SVN-ideal of [0, 1].
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Next, we give an example on an SVN-right ideal of R that is not an SVN-ideal of R.

Example 10. Let O = {0, k1, k2, k3} and define (O,+, ·) by the following tables.

+ 0 k1 k2 k3

0 0 k1 b k3

k1 k1 k1 k1 k1

k2 k2 k1 k2 k3

k3 k3 k1 k3 k3

· 0 k1 k2 k3

0 0 0 0 0
k1 0 k1 k1 k1

k2 0 k2 k2 k2

k3 0 k1 k1 k1

Then (O,+, ·) is a semiring [17]. By considering the trivial order “≤” on O, we get that (O,+, ·,≤)
is an ordered semiring. Let A be the SVNS on R defined as follows:

A =
{ 0
(0.7, 0.2, 0.35)

,
k1

(0.65, 0.32, 0.4)
,

k2

(0.1, 0.6, 0.9)
,

k3

(0.1, 0.6, 0.9)

}
.

Then A is an SVN-right ideal of R. Moreover, it is not an SVN-left ideal of R as NA(b) = NA(a ·b) �
NA(a). Thus, it is not an SVN-ideal of R.

Definition 4.3. Let (R,+, ·,≤) be an ordered semiring, m, n be non-negative integers with (m, n) ,
(0, 0), and A an SVNS on R. Then A is an SVN-(m, n)-ideal of R if the following conditions hold for
all x, y, x1, . . . , xm, y1, . . . , yn, r ∈ R.

(1) NA(x + y) ≥ NA(x) ∧ NA(y);
(2) NA(x1 · . . . · xm · r · y1 . . . · yn) ≥ NA(x1) ∧ . . . ∧ NA(xm) ∧ NA(y1) ∧ . . . ∧ NA(yn);
(3) If x ≤ y then NA(x) ≥ NA(y).

Moreover, if m = n = 1 then A is an SVN-bi-ideal of R.

Next, we give an example on an SVN-bi-ideal of an ordered semiring that is not an SVN-left ideal
nor an SVN-right ideal.

Example 11. Let M be the set of non-negative real numbers and (M2(M),+, ·) be the semiring of all
2 × 2 matrices with non-negative real entries under usual addition and multiplication of matrices. By
defining “≤” on M2(M) to be the trivial order, we get that (M2(M),+, ·,≤) is an ordered semiring.

Let A be the SVNS on M2(M) defined as follows:

NA(
(
a11 a12

a21 a22

)
) =

(0.9, 0.2, 0.204) if a12 = a21 = a22 = 0;
(0.54, 0.367, 0.359) otherwise.

Then A is an SVN-bi-ideal of M2(S ).

Since NA(
(
1 1
1 1

) (
1 0
0 0

)
) = (0.54, 0.367, 0.359) � (0.9, 0.2, 0.204) = NA(

(
1 0
0 0

)
), it follows that A is

not an SVN-left ideal of M2(M). Furthermore, because

NA(
(
1 0
0 0

) (
1 1
1 1

)
) = NA(

(
1 1
0 0

)
) = (0.54, 0.367, 0.359) � (0.9, 0.2, 0.204) = NA(

(
1 0
0 0

)
), it follows

that A is not an SVN-right ideal of M2(M).
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Remark 3. Let (R,+, ·,≤) be an ordered semiring, m, n be non-negative integers with (m, n) , (0, 0),
and A an SVNS on R. Then the following are true.

(1) If A is an SVN-ideal of R then A is an SVN left (right)-SVN-ideal, SVN-bi-ideal, and an SVN-
(m, n)-ideal of R for all m, n ≥ 1.

(2) If A is an SVN-left ideal of R then A is an SVN-(0, n)-ideal of R for all n ≥ 1.
(3) If A is an SVN-right ideal of R then A is an SVN-(m, 0)-ideal of R for all m ≥ 1.
(4) If A is an SVN-(m, n)-ideal of R then A is an SVN-(s, t)-ideal of R for all s ≥ m, t ≥ n.

Next, we give an example on an SVN-(m, n)-ideal of an ordered semiring that is not an SVN-bi-
ideal.

Example 12. Let T = Q+∪{0} and (M3(T ),+, ·) be the semiring of all 3×3 matrices with non-negative
rational entries under usual addition and multiplication of matrices. By defining “≤” on M3(T ) to be
the trivial order, we get that (M3(T ),+, ·,≤) is an ordered semiring.

Let A be the SVNS on M3(T ) defined as follows:

NA(


a11 a12 a13

a21 a22 a23

a31 a32 a33

) =

(0.889, 0.12, 0.0322) if a11 = a21 = a22 = a31 = a32 = a33 = 0;
(0.687, 0.597, 0.549) otherwise.

Then A is an SVN-(2, 1)-ideal of M3(T ) that is not an SVN-bi-ideal of M3(T ). Moreover, A is an
SVN-(m, 0)-ideal of M3(T ) and an SVN-(0, n)-ideal of M3(T ) for all m, n ≥ 3.

Proposition 4.4. Let (R,+, ·,≤) be an ordered semiring, m, n be non-negative integers with (m, n) ,
(0, 0), and A an SVNS on R. If A is an SVN-(m, n)-ideal of R then NA(0) ≥ NA(x) for all x ∈ R.

Proof. Having A an SVN-(m, n)-ideal of R implies that NA(0) = NA(xm ·0·xn) ≥ NA(x) for all x ∈ R. �

Proposition 4.5. Let (R,+, ·,≤) be an ordered semifield, m, n be non-negative integers with (m, n) ,
(0, 0), and A an SVNS on R. If A is an SVN-(m, n)-ideal of R then NA(r) = NA(1) for all r ∈ R − {0}.

Proof. Having A an SVN-(m, n)-ideal of R and R commutative implies that NA(r) = NA(1m+n·r) ≥ NA(1)
for all r ∈ R. Moreover, we have NA(1) = NA(r−m−n · rm+n) ≥ NA(r) for all r ∈ R − {0}. Therefore,
NA(r) = NA(1) for all x ∈ R − {0}. �

Example 13. Let (R ∪ {−∞},∨,+,≤) be the ordered semifield in Example 3, m, n be non-negative
integers with (m, n) , (0, 0), and A be the SVNS on R ∪ {−∞} defined as follows.

NA(x) =

(0.687, 0.34, 0.28) if x ∈ [1,∞[;
(0.956, 0.14, 0.08) otherwise.

Proposition 4.5 asserts that A is not an SVN-(m, n)-ideal of R ∪ {−∞}.

Next, we deal with some operations involving S VN-(m, n)-ideals of ordered semirings.

Lemma 4.6. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be ordered semirings, m, n be non-negative integers
with (m, n) , (0, 0), and A, B be S VN-(m, 0)-ideal and S VN-(0, n)-ideal of R1,R2 respectively. Then
A × B is an SVN-(m, n)-ideal of R1 × R2.
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Proof. Let (x, y), (z,w) ∈ R1 × R2. Then NA×B(x +1 z, y +2 w) = NA(x +1 z) ∧ NA(y +2 w). Having A, B
S VN-(m, 0)-ideal and S VN-(0, n)-ideal of R1,R2 respectively implies that NA×B(x+1z, y+2w) ≥ NA(x)∧
NA(z)∧NB(y)∧NB(w) = NA×B(x, y)∧NA×B(z,w). Let (x1, y1), . . . , (xm, ym), (r1, r2), (z1,w1), . . . , (zn,wn) ∈
R1 × R2,
v = (x1, y1) . . . (xm, ym)(r1, r2)(z1,w1) . . . (zn,wn), v1 = x1 . . . xmr1z1 . . . zn, and v2 = y1 . . . ymr2w1 . . .wn.
Then NA×B(v) = NA×B((v1, v2)) = NA(v1) ∧ NB(v2). Having A, B S VN-(m, 0)-ideal and S VN-(0, n)-
ideal of R1,R2 respectively implies that NA(v1) = NA(x1 . . . xm(r1z1 . . . zn)) ≥ NA(x1) ∧ . . . ∧ NA(xm)
and NB(v2) = NB((y1 . . . ymr2)w1 . . .wn) ≥ NB(w1) ∧ . . . ∧ NB(wn). The latter implies that NA×B(v) ≥
NA(x1)∧ . . .∧NA(xm)∧NB(w1)∧ . . .∧NB(wn) ≥ NA(x1)∧ . . .∧NA(xm)∧NA(z1) . . .∧NA(zn)∧NB(y1)∧
. . . ∧ NB(ym) ∧ NB(w1) ∧ . . . ∧ NB(wn) and hence,

NA×B(v) ≥ NA×B((x1, y1)) ∧ . . . ∧ NA×B((xm, ym)) ∧ NA×B((z1,w1)) ∧ . . . ∧ NA×B((zn,wn)).

Let (x, y) ≤ (z,w) ∈ R1 × R2. Having x ≤1 z, y ≤2 w and A, B S VN-(m, 0)-ideal and S VN-(0, n)-
ideal of R1,R2 respectively implies that NA(x) ≥ NA(z) and NB(y) ≥ NB(w). The latter implies that
NA×B((x, y)) ≥ NA×B((z,w)). Therefore, A × B is an SVN-(m, n)-ideal of R1 × R2. �

Corollary 4.7. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be ordered semirings and A, B be S VN-right-ideal
and S VN-left-ideal of R1,R2 respectively. Then A × B is an SVN-bi-ideal of R1 × R2.

Example 14. Let O~ = {0, p1, p2, p3} and define (O~,+~, ·~) by the following tables.

+~ 0 p1 p2 p3

0 0 p1 p2 p3

p1 p1 p1 p1 p1

p2 p2 p1 p2 p3

p3 p3 p1 p3 p3

·~ 0 p1 p2 p3

0 0 0 0 0
p1 0 p1 p2 p3

p2 0 p1 p2 p3

p3 0 p1 p2 p3

Then (O~,+~, ·~) is a semiring. By defining the trivial order “≤” on O~, we get that (O~,+~, ·~,≤)
is an ordered semiring [2]. Let A~ be the SVNS on O~ defined as follows:

A~ =
{ 0
(0.7, 0.2, 0.35)

,
p1

(0.65, 0.32, 0.4)
,

p2

(0.1, 0.6, 0.9)
,

p3

(0.1, 0.6, 0.9)

}
.

Then A~ is an SVN-left ideal of O~. By taking the ordered semiring (O,+, ·,≤) in Example 10 and
its SVN-right ideal A, we get by using Corollary 4.7 that A × B is an SVN-bi-ideal of O × O~. Here,
A × A~ is defined as follows.

NA((x, y)) =


(0.7, 0.2, 0.35) if (x, y) = (0, 0);
(0.65, 0.32, 0.4) if x ∈ {0, k1}, y ∈ {0, p1}, and (x, y) , (0, 0);
(0.1, 0.6, 0.9) otherwise.

Proposition 4.8. Let (R,+, ·,≤) be an ordered semiring, m, n be non-negative integers with (m, n) ,
(0, 0), and A1, A2 be S VN-(m, n)-ideals of R. Then A1 ∩ A2 is an SVN-(m, n)-ideal of R.

Proof. The proof is straightforward. �
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Remark 4. Let (R,+, ·,≤) be an ordered semiring, m, n be non-negative integers with (m, n) , (0, 0),
and A, B be S VN-(m, n)-ideals of R. Then A ∪ B is not necessary an SVN-(m, n)-ideal of R.

Example 15. Let (N,�,�,≤) be the ordered semiring of Example 6 and A, B be the SVNS on R defined
as follows.

A =
{ 0
(0.67, 0.02, 0.135)

,
1

(0.55, 0.25, 0.24)
,

2
(0.21, 0.46, 0.89)

,
3

(0.21, 0.46, 0.89)

}
,

B =
{ 0
(0.63, 0.01, 0.335)

,
1

(0.321, 0.56, 0.91)
,

2
(0.55, 0.15, 0.44)

,
3

(0.321, 0.56, 0.91)

}
.

It is easy to see that A, B are SVN-(0, 1)-ideals of N. Having

A ∪ B =
{ 0
(0.67, 0.01, 0.135)

,
1

(0.55, 0.25, 0.24)
,

2
(0.55, 0.15, 0.44)

,
3

(0.321, 0.46, 0.89)

}
,

3 = 1 + 2, and NA∪B(3) � NA∪B(1) ∧ NA∪B(2) implies that A ∪ B is not an SVN-(0, 1)-ideal of N.

Lemma 4.9. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be ordered semirings, m, n be non-negative integers
with (m, n) , (0, 0), and A, B be S VN-(m, n)-ideals of R1,R2 respectively. Then A×B is an SVN-(m, n)-
ideal of R1 × R2.

Proof. The proof is similar to that of Lemma 4.6. �

Proposition 4.10. Let (R,+, ·,≤) be an ordered semiring with a2 = a for all a ∈ R, m, n be positive
integers, and A an SVNS on R. Then A is an S VN-(m, n)-ideal of R if and only if A is an SVN-bi-ideal
of R.

Proof. The proof is straightforward as xmryn = xry for all x, y, r ∈ R. �

Proposition 4.11. Let (R,+, ·,≤) be a commutative ordered semiring with a2 = a for all a ∈ R, m, n be
non-negative integers with (m, n) , (0, 0), and A an SVNS on R. Then A is an S VN-(m, n)-ideal of R if
and only if A is an SVN-ideal of R.

Proof. The proof is straightforward as xm+n = x for all x ∈ R. �

Next, we show that the pre-image of an SVN-(m, n)-ideal under ordered semiring homomorphism
is an SVN-(m, n)-ideal.

Proposition 4.12. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be ordered semirings, A an SVNS on R2, m, n
be non-negative integers with (m, n) , (0, 0), and f : R1 → R2 an ordered semiring homomorphism. If
A is an SVN-(m, n)-ideal of R2 then f −1(A) is an SVN-(m, n)-ideal of R1.

Proof. Let x, y ∈ R1. Then N f −1(A)(x +1 y) = NA( f (x +1 y)) = NA( f (x) +2 f (y)). Having A an SVN-
(m, n)-ideal of R2 implies that NA( f (x) +2 f (y)) ≥ NA( f (x)) ∧ NA( f (y)) = N f −1(A)(x) ∧ N f −1(A)(y) and
hence, N f −1(A)(x +1 y) ≥ N f −1(A)(x) ∧ N f −1(A)(y). Let x1, . . . , xm, r, y1, . . . , yn ∈ R1. Then

N f −1(A)(x1 ·1 . . . ·1 xm ·1 r ·1 y1 ·1 . . . ·1 ym) = NA( f (x1 ·1 . . . ·1 xm ·1 r ·1 y1 ·1 . . . ·1 ym)).

Since f is a homomorphism, it follows that

N f −1(A)(x1 ·1 . . . ·1 xm ·1 r ·1 y1 ·1 . . . ·1 ym) = NA( f (x1) ·2 . . . ·2 f (xm) ·2 f (r) ·2 f (y1) ·2 . . . ·2 f (ym)).
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The latter and having A an SVN-(m, n)-ideal of R2 implies that for z = x1 ·1 . . . ·1 xm ·1 r ·1 y1 ·1 . . . ·1 ym,

N f −1(A)(z) ≥ N f −1(A)(x1) ∧ . . .N f −1(A)(xm) ∧ N f −1(A)(y1) ∧ . . . ∧ N f −1(A)(yn).

Let x ≤1 y ∈ R1. Having f (x) ≤2 f (y) ∈ R2 and A an SVN-(m, n)-ideal of R2 implies that NA( f (x)) ≥
NA( f (y)). The latter implies that N f −1(A)(x) ≥ N f −1(A)(y). Therefore, f −1(A) is an SVN-(m, n)-ideal of
R1. �

Corollary 4.13. Let (R,+, ·,≤) be an ordered semiring, m, n be non-negative integers with (m, n) ,
(0, 0), and A = { x

(TA(x),IA(x),FA(x)) : x ∈ R} an SVNS on R, and S a subsemiring of R. If A is an S VN-
(m, n)-ideal of R then A′ = { x

(TA(x),IA(x),FA(x)) : x ∈ S } is an S VN-(m, n)-ideal of S .

Proof. Let f : S → R be the inclusion map (i.e. f (x) = x for all x ∈ S ). Proposition 4.12 asserts that
f −1(A) = A′ is an S VN-(m, n)-ideal of S . �

Next, we find a relationship between (m, n)-ideals of ordered semirings and level sets.

Lemma 4.14. Let (R,+, ·,≤) be an ordered semiring, m, n be non-negative integers with (m, n) , (0, 0),
and I ⊆ R an (m, n)-ideal of R. Then I is a level set of an SVN-(m, n)-ideal of R.

Proof. Let A be the SVNS on R defined as follows:

N(x) =

(1, 0, 0) if x ∈ I;
(0, 1, 1) otherwise.

One can easily see that A is an SVN-(m, n)-ideal of R and that A(1,0,0) = I. �

Theorem 4.15. Let (R,+, ·,≤) be an ordered semiring, m, n be non-negative integers with (m, n) ,
(0, 0), 0 ≤ α, β, γ ≤ 1, and A an SVNS on R. Then A is an SVN-(m, n)-ideal of R if and only if A(α,β,γ) is
either the empty set or an (m, n)-ideal of R.

Proof. Let A be an SVN-(m, n)-ideal of R and x, y ∈ A(α,β,γ) , ∅. Then NA(x),NA(y) ≥ (α, β, γ).
Having A an SVN-(m, n)-ideal of R implies that NA(x + y) ≥ NA(x) ∧ NA(y) ≥ (α, β, γ) and hence
x + y ∈ A(α,β,γ). Let x1, . . . , xm, y1, . . . , yn ∈ A(α,β,γ) and r ∈ R. Having A an SVN-(m, n)-ideal of R
implies that NA(x1 . . . xmry1 . . . yn) ≥ NA(x1)∧ . . .NA(xm)∧ NA(y1)∧ . . .∧ NA(yn) ≥ (α, β, γ) and hence,
x1 . . . xmry1 . . . yn ∈ A(α,β,γ). Let y ∈ A(α,β,γ) and x ≤ y. Having A an SVN-(m, n)-ideal of R implies that
NA(y) ≥ NA(x) ≥ (α, β, γ) and hence, y ∈ A(α,β,γ). Thus, A(α,β,γ) is an (m, n)-ideal of R.

Conversely, let x, y ∈ R with NA(x) ∧ NA(y) = (α, β, γ). Having A(α,β,γ) , ∅ an (m, n)-ideal of R and
x, y ∈ A(α,β,γ) implies that x + y ∈ A(α,β,γ) and hence NA(x + y) ≥ (α, β, γ) = NA(x) ∧ NA(y). Let
x1, . . . , xm, r, y1, . . . , yn ∈ R with NA(x1) ∧ . . . ∧ NA(xm) ∧ NA(y1) ∧ . . . ∧ NA(yn) = (α′, β′, γ′). Having
A(α′,β′,γ′) , ∅ an (m, n)-ideal of R implies that x1 . . . xmry1 . . . yn ∈ A(α′,β′,γ′) and hence,
NA(x1 . . . xmry1 . . . yn) ≥ (α′, β′, γ′) = NA(x1) ∧ . . . ∧ NA(xm) ∧ NA(y1) ∧ . . . ∧ NA(yn). Let x ≤ y and
NA(y) = (α0, β0, γ0). Having A(α0,β0,γ0) , ∅ an (m, n)-ideal of R and y ∈ A(α0,β0,γ0) implies that
x ∈ A(α0,β0,γ0) and hence, NA(x) ≥ (α0, β0, γ0) = NA(y). Thus, A is an SVN-(m, n)-ideal of R. �
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5. Conclusions

This paper added to the neutrosophic algebraic structures theory by considering SVN subsets of
ordered semirings. The concept of SVN-(m, n)-ideals of ordered semirings was defined and studied.
Having every SVN-ideal (bi-ideal) of ordered semiring an SVN-(m, n)-ideal makes our results a
generalization of SVN-ideals (bi-ideals) of ordered semirings. Also, having SVNSs a generalization
of both: fuzzy sets and intuitionistic fuzzy sets makes the study of fuzzy-(m, n)-ideals and
intuitionistic fuzzy-(m, n)-ideals of ordered semirings special cases of our study.

It is well known that the concept of single valued neutrosophic sets and that of ordered semirings
are well established in dealing with many real life problems. So, the new defined concepts in this paper
would help to approach these problems with a different perspective. For future research, it would be
interesting to consider other types of SVN substructures in ordered semirings.
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