Research article

Solving a nonlinear integral equation via orthogonal metric space

  • Received: 07 July 2021 Accepted: 11 October 2021 Published: 21 October 2021
  • MSC : 47H10, 54H25

  • We propose the concept of orthogonally triangular $ \alpha $-admissible mapping and demonstrate some fixed point theorems for self-mappings in orthogonal complete metric spaces. Some of the well-known outcomes in the literature are generalized and expanded by our results. An instance to help our outcome is presented. We also explore applications of our key results.

    Citation: Arul Joseph Gnanaprakasam, Gunaseelan Mani, Jung Rye Lee, Choonkil Park. Solving a nonlinear integral equation via orthogonal metric space[J]. AIMS Mathematics, 2022, 7(1): 1198-1210. doi: 10.3934/math.2022070

    Related Papers:

  • We propose the concept of orthogonally triangular $ \alpha $-admissible mapping and demonstrate some fixed point theorems for self-mappings in orthogonal complete metric spaces. Some of the well-known outcomes in the literature are generalized and expanded by our results. An instance to help our outcome is presented. We also explore applications of our key results.



    加载中


    [1] H. H. Alsulami, S. Gülyaz, E. Karapinar, I. M. Erhan, Fixed point theorems for a class of $\alpha$-admissible contractions and applications to boundary value problems, Abstr. Appl. Anal., 2014 (2014), 187031. doi: 10.1155/2014/187031. doi: 10.1155/2014/187031
    [2] I. Beg, M. Gunaseelan, G. Arul Joseph, Fixed point of orthogonal $F$-Suzuki contraction mapping on $O$-complete $b$-metric space with an application, J. Funct. Spaces, 2021 (2021), 6692112. doi: 10.1155/2021/6692112. doi: 10.1155/2021/6692112
    [3] M. Eshaghi Gordji, M. Ramezani, M. De la Sen, Y. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. doi: 10.24193/fpt-ro.2017.2.45. doi: 10.24193/fpt-ro.2017.2.45
    [4] M. Eshaghi Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algebra, 6 (2017), 251–260.
    [5] M. Eshaghi Gordji, H. Habibi, Fixed point theory in $\epsilon$-connected orthogonal metric space, Sahand Comm. Math. Anal., 16 (2019), 35–46. doi: 10.22130/scma.2018.72368.289. doi: 10.22130/scma.2018.72368.289
    [6] M. Gunaseelan, G. Arul Joseph, L. N. Mishra, V. N. Mishra, Fixed point theorem for orthogonal $F$-Suzuki contraction mapping on an $O$-complete metric space with an application, Malay. J. Mat., 1 (2021), 369–377. doi: 10.26637/MJM0901/0062. doi: 10.26637/MJM0901/0062
    [7] N. B. Gungor, D. Turkoglu, Fixed point theorems on orthogonal metric spaces via altering distance functions, AIP Conf. Proc., 2183 (2019), 040011. doi: 10.1063/1.5136131. doi: 10.1063/1.5136131
    [8] R. Maryam, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl., 6 (2015), 127–132. doi: 10.22075/ijnaa.2015.261. doi: 10.22075/ijnaa.2015.261
    [9] M. S. Khan, S. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1–9. doi: 10.1017/S0004972700001659. doi: 10.1017/S0004972700001659
    [10] H. Piri, P. Kumam, Some fixed point theorems concerning $F$-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 210. doi: 10.1186/1687-1812-2014-210. doi: 10.1186/1687-1812-2014-210
    [11] K. Sawangsup, W. Sintunavarat, Fixed point results for orthogonal $Z$-contraction mappings in $O$-complete metric space, Int. J. Appl. Phys. Math., in press.
    [12] K. Sawangsup, W. Sintunavarat, Y. Cho, Fixed point theorems for orthogonal $F$-contraction mappings on $O$-complete metric spaces, J. Fixed Point Theory Appl., 22 (2020), 10. doi: 10.1007/s11784-019-0737-4. doi: 10.1007/s11784-019-0737-4
    [13] T. Senapati, L. K. Dey, B. Damjanović, A. Chanda, New fixed results in orthogonal metric spaces with an Application, Kragujevac J. Math., 42 (2018), 505–516.
    [14] F. Uddin, C. Park, K. Javed, M. Arshad, J. Lee, Orthogonal $m$-metric spaces and an application to solve integral equations, Adv. Differ. Equ., 2021 (2021), 159. doi: 10.1186/s13662-021-03323-x. doi: 10.1186/s13662-021-03323-x
    [15] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. doi: 10.1186/1687-1812-2012-94. doi: 10.1186/1687-1812-2012-94
    [16] O. Yamaod, W. Sintunavarat, On new orthogonal contractions in $b$-metric spaces, Int. J. Pure Math., 5 (2018), 37–40.
    [17] Q. Yang, C. Bai, Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on $O$-complete metric spaces, AIMS Math., 5 (2020), 5734–5742. doi: 10.3934/math.2020368. doi: 10.3934/math.2020368
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1908) PDF downloads(94) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog