In this paper, we introduce the concepts of an orthogonal $ F $-contractive type mapping, an orthogonal Kannan $ F $-contractive type mapping and an orthogonal $ F $-expanding type mapping. We prove some fixed point theorems for these mappings in orthogonal complete $ b $-metric spaces. The obtained results generalize and extend some of the well known results in the literature. An example is presented to support our results.
Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Choonkil Park, Sungsik Yun. Orthogonal $ F $-contractions on $ O $-complete $ b $-metric space[J]. AIMS Mathematics, 2021, 6(8): 8315-8330. doi: 10.3934/math.2021481
In this paper, we introduce the concepts of an orthogonal $ F $-contractive type mapping, an orthogonal Kannan $ F $-contractive type mapping and an orthogonal $ F $-expanding type mapping. We prove some fixed point theorems for these mappings in orthogonal complete $ b $-metric spaces. The obtained results generalize and extend some of the well known results in the literature. An example is presented to support our results.
[1] | H. Afshari, H. Aydi, E. Karapinar, On generalized $\alpha$-$\psi$-Geraghty contractions on $b$-metric spaces, Georgian. Math. J., 27 (2020), 9–21. doi: 10.1515/gmj-2017-0063 |
[2] | U. Aksoy, E. Karapinar, I. M. Erhan, Fixed points of generalized alpha-admissible contractions on $b$-metric spaces with an application to boundary value problems, J. Nonlinear Convex A., 17 (2016), 1095–1108. |
[3] | M. A. Alghamdi, S. Gülyaz-Özyurt, E. Karapinar, A note on extended $Z$-contraction, Mathematics, 8 (2020), 195. doi: 10.3390/math8020195 |
[4] | H. H. Alsulami, S. Gülyaz-Özyurt, E. Karapinar, I. M. Erhan, An Ulam stability result on quasi-$b$-metric-like spaces, Open Math., 14 (2016), 1087–1103. doi: 10.1515/math-2016-0097 |
[5] | H. H. Alsulami, E. Karapinar, H. Piri, Fixed points of generalised $F$-Suzuki type contraction in complete $b$-metric space, Discrete Dyn. Nat. Soc., 2015 (2015), 969726. |
[6] | H. H. Alsulamia, E. Karapinar, V. Rakočević, Ćirić type nonunique fixed point theorems on $b$-metric spaces, Filomat, 31 (2017), 3147–3156. doi: 10.2298/FIL1711147A |
[7] | H. Aydi, M. F. Bota, E. Karapinar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. doi: 10.1186/1687-1812-2012-88 |
[8] | H. Aydi, M. F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak $\phi$-contractions on $b$-metric spaces, Fixed Point Theory, 13 (2012), 337–346. |
[9] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
[10] | M. Cosentino, M. Jleli, B. Sarmet, C. Vetro, Solvability of integro differential proplems via fixed point theory in $b$-metric spaces, Fixed Point Theory Appl., 2015 (2015), 70. doi: 10.1186/s13663-015-0317-2 |
[11] | S. Czerwik, Contraction mapping $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11. |
[12] | M. Eshagi Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, JLTAl, 6 (2017), 251–260. |
[13] | M. Eshaghi Gordji, H. Habibi, Fixed point theory in $\epsilon$-connected orthogonal metric space, Sahand Commun. Math. Anal., 16 (2019), 35–46. |
[14] | M. Eshaghi Gordji, M. Ramezani, M. De la Sen, Y. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. doi: 10.24193/fpt-ro.2017.2.45 |
[15] | A. Fulga, E. Karapinar, G. Petrușel, On hybrid contractions in the context of quasi-metric spaces, Mathematics, 8 (2020), 675. doi: 10.3390/math8101793 |
[16] | J. Gornicki, Fixed point theorems for $F$-expanding mappings, Fixed Point Theory Appl., 2017 (2017), 9. |
[17] | N. Goswami, N. Haokip, V. N. Mishra, $F$-contractive type mappings in $b$-metric spaces and some related fixed point results, Fixed Point Theory Appl., 2019 (2019), 13. doi: 10.1186/s13663-019-0663-6 |
[18] | S. Gülyaz-Özyurt, On some $\alpha$-admissible contraction mappings on Branciari $b$-metric spaces, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 1–13. |
[19] | N. B. Gungor, D. Turkoglu, Fixed point theorems on orthogonal metric spaces via altering distance functions, AIP Conference Proceedings, 2183 (2019), 040011. doi: 10.1063/1.5136131 |
[20] | E. Karapinar, C. Chifu, Results in $wt$-distance over $b$-metric spaces, Mathematics, 8 (2020), 220. doi: 10.3390/math8020220 |
[21] | E. Karapinar, A. Fulga, A. Petrușel, On Istrǎţescu type contractions in $b$-metric spaces, Mathematics, 8 (2020), 388. doi: 10.3390/math8030388 |
[22] | I. A. Rus, Picard operators and applications, Sci. Math. Japonicaen, 58 (2003), 191–219. |
[23] | K. Sawangsup, W. Sintunavarat, Fixed point results for orthogonal $Z$-contraction mappings in $O$-complete metric space, Int. J. Appl. Phys. Math., 10 (2020), 33–40. doi: 10.17706/ijapm.2020.10.1.33-40 |
[24] | K. Sawangsup, W. Sintunavarat, Y. J. Cho, Fixed point theorems for orthogonal $F$-contraction mappings on $O$-complete metric spaces, J. Fixed Point Theorey Appl., 22 (2020), 10. doi: 10.1007/s11784-019-0737-4 |
[25] | T. Senapati, L. K. Dey, B. Damjanović, A. Chanda, New fixed results in orthogonal metric spaces with an application, Kragujevac J. Math., 42 (2018), 505–516. doi: 10.5937/KgJMath1804505S |
[26] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. doi: 10.1186/1687-1812-2012-94 |
[27] | O. Yamaod, W. Sintunavarat, On new orthogonal contractions in $b$-metric spaces, Int. J. Pure Math., 5 (2018), 37–40. |
[28] | Q. Yang, C. Z. Bai, Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on $O$-complete metric spaces, AIMS Mathematics, 5 (2020), 5734–5742. doi: 10.3934/math.2020368 |