Research article

Orthogonal $ F $-contractions on $ O $-complete $ b $-metric space

  • Received: 29 December 2020 Accepted: 25 May 2021 Published: 28 May 2021
  • MSC : 47H10, 54H25

  • In this paper, we introduce the concepts of an orthogonal $ F $-contractive type mapping, an orthogonal Kannan $ F $-contractive type mapping and an orthogonal $ F $-expanding type mapping. We prove some fixed point theorems for these mappings in orthogonal complete $ b $-metric spaces. The obtained results generalize and extend some of the well known results in the literature. An example is presented to support our results.

    Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Choonkil Park, Sungsik Yun. Orthogonal $ F $-contractions on $ O $-complete $ b $-metric space[J]. AIMS Mathematics, 2021, 6(8): 8315-8330. doi: 10.3934/math.2021481

    Related Papers:

  • In this paper, we introduce the concepts of an orthogonal $ F $-contractive type mapping, an orthogonal Kannan $ F $-contractive type mapping and an orthogonal $ F $-expanding type mapping. We prove some fixed point theorems for these mappings in orthogonal complete $ b $-metric spaces. The obtained results generalize and extend some of the well known results in the literature. An example is presented to support our results.



    加载中


    [1] H. Afshari, H. Aydi, E. Karapinar, On generalized $\alpha$-$\psi$-Geraghty contractions on $b$-metric spaces, Georgian. Math. J., 27 (2020), 9–21. doi: 10.1515/gmj-2017-0063
    [2] U. Aksoy, E. Karapinar, I. M. Erhan, Fixed points of generalized alpha-admissible contractions on $b$-metric spaces with an application to boundary value problems, J. Nonlinear Convex A., 17 (2016), 1095–1108.
    [3] M. A. Alghamdi, S. Gülyaz-Özyurt, E. Karapinar, A note on extended $Z$-contraction, Mathematics, 8 (2020), 195. doi: 10.3390/math8020195
    [4] H. H. Alsulami, S. Gülyaz-Özyurt, E. Karapinar, I. M. Erhan, An Ulam stability result on quasi-$b$-metric-like spaces, Open Math., 14 (2016), 1087–1103. doi: 10.1515/math-2016-0097
    [5] H. H. Alsulami, E. Karapinar, H. Piri, Fixed points of generalised $F$-Suzuki type contraction in complete $b$-metric space, Discrete Dyn. Nat. Soc., 2015 (2015), 969726.
    [6] H. H. Alsulamia, E. Karapinar, V. Rakočević, Ćirić type nonunique fixed point theorems on $b$-metric spaces, Filomat, 31 (2017), 3147–3156. doi: 10.2298/FIL1711147A
    [7] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. doi: 10.1186/1687-1812-2012-88
    [8] H. Aydi, M. F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak $\phi$-contractions on $b$-metric spaces, Fixed Point Theory, 13 (2012), 337–346.
    [9] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [10] M. Cosentino, M. Jleli, B. Sarmet, C. Vetro, Solvability of integro differential proplems via fixed point theory in $b$-metric spaces, Fixed Point Theory Appl., 2015 (2015), 70. doi: 10.1186/s13663-015-0317-2
    [11] S. Czerwik, Contraction mapping $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [12] M. Eshagi Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, JLTAl, 6 (2017), 251–260.
    [13] M. Eshaghi Gordji, H. Habibi, Fixed point theory in $\epsilon$-connected orthogonal metric space, Sahand Commun. Math. Anal., 16 (2019), 35–46.
    [14] M. Eshaghi Gordji, M. Ramezani, M. De la Sen, Y. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. doi: 10.24193/fpt-ro.2017.2.45
    [15] A. Fulga, E. Karapinar, G. Petrușel, On hybrid contractions in the context of quasi-metric spaces, Mathematics, 8 (2020), 675. doi: 10.3390/math8101793
    [16] J. Gornicki, Fixed point theorems for $F$-expanding mappings, Fixed Point Theory Appl., 2017 (2017), 9.
    [17] N. Goswami, N. Haokip, V. N. Mishra, $F$-contractive type mappings in $b$-metric spaces and some related fixed point results, Fixed Point Theory Appl., 2019 (2019), 13. doi: 10.1186/s13663-019-0663-6
    [18] S. Gülyaz-Özyurt, On some $\alpha$-admissible contraction mappings on Branciari $b$-metric spaces, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 1–13.
    [19] N. B. Gungor, D. Turkoglu, Fixed point theorems on orthogonal metric spaces via altering distance functions, AIP Conference Proceedings, 2183 (2019), 040011. doi: 10.1063/1.5136131
    [20] E. Karapinar, C. Chifu, Results in $wt$-distance over $b$-metric spaces, Mathematics, 8 (2020), 220. doi: 10.3390/math8020220
    [21] E. Karapinar, A. Fulga, A. Petrușel, On Istrǎţescu type contractions in $b$-metric spaces, Mathematics, 8 (2020), 388. doi: 10.3390/math8030388
    [22] I. A. Rus, Picard operators and applications, Sci. Math. Japonicaen, 58 (2003), 191–219.
    [23] K. Sawangsup, W. Sintunavarat, Fixed point results for orthogonal $Z$-contraction mappings in $O$-complete metric space, Int. J. Appl. Phys. Math., 10 (2020), 33–40. doi: 10.17706/ijapm.2020.10.1.33-40
    [24] K. Sawangsup, W. Sintunavarat, Y. J. Cho, Fixed point theorems for orthogonal $F$-contraction mappings on $O$-complete metric spaces, J. Fixed Point Theorey Appl., 22 (2020), 10. doi: 10.1007/s11784-019-0737-4
    [25] T. Senapati, L. K. Dey, B. Damjanović, A. Chanda, New fixed results in orthogonal metric spaces with an application, Kragujevac J. Math., 42 (2018), 505–516. doi: 10.5937/KgJMath1804505S
    [26] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. doi: 10.1186/1687-1812-2012-94
    [27] O. Yamaod, W. Sintunavarat, On new orthogonal contractions in $b$-metric spaces, Int. J. Pure Math., 5 (2018), 37–40.
    [28] Q. Yang, C. Z. Bai, Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on $O$-complete metric spaces, AIMS Mathematics, 5 (2020), 5734–5742. doi: 10.3934/math.2020368
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3059) PDF downloads(191) Cited by(9)

Article outline

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog