In this study, we characterize a novel contraction mapping referred to as $ \alpha_{i}^{j} $-$ \left({\bf D}_{{\mathscr{C}}}\left(\mathfrak{P}_{\hat E}\right)\right) $-contraction in light of $ {\bf D}_{\mathscr{C}} $-contraction mappings associated with the Geraghty-type contraction and $ E $-type contraction. Besides, a novel common fixed-point theorem providing such mappings is demonstrated in the context of partial $ \flat $-metric spaces. It is stated that the main theorem is a generalization of the existing literature, and its comparisons with the results are expressed. Additionally, the efficiency of the result of this study is demonstrated through some examples and an application to homotopy theory.
Citation: Leyla Sağ Dönmez, Abdurrahman Büyükkaya, Mahpeyker Öztürk. Fixed-point results via $ \alpha_{i}^{j} $-$ \left({\bf D}_{{\mathscr{C}}}\left(\mathfrak{P}_{\hat E}\right)\right) $-contractions in partial $ \flat $-metric spaces[J]. AIMS Mathematics, 2023, 8(10): 23674-23706. doi: 10.3934/math.20231204
In this study, we characterize a novel contraction mapping referred to as $ \alpha_{i}^{j} $-$ \left({\bf D}_{{\mathscr{C}}}\left(\mathfrak{P}_{\hat E}\right)\right) $-contraction in light of $ {\bf D}_{\mathscr{C}} $-contraction mappings associated with the Geraghty-type contraction and $ E $-type contraction. Besides, a novel common fixed-point theorem providing such mappings is demonstrated in the context of partial $ \flat $-metric spaces. It is stated that the main theorem is a generalization of the existing literature, and its comparisons with the results are expressed. Additionally, the efficiency of the result of this study is demonstrated through some examples and an application to homotopy theory.
[1] | S. Banach, Sur les operations dans les emsembles abstraits et leurs applications aux equations integrales, Fund. Math., 3 (1922), 133–181. |
[2] | I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[3] | S. Czerwik, Contraction mappings in $\flat$-metric spaces, Acta Math. Inf. Univ. Ostraviensis, 1 (1993), 5–11. |
[4] | S. Czerwik, Nonlinear set-valued contraction mappings in $\flat$-metric spaces, Atti Sem. Math. Fis. Univ. Modena, 46 (1998), 263–276. |
[5] | A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered G$\flat$-metric spaces, Filomat, 28 (2014), 1087–1101. https://doi.org/10.2298/FIL1406087A doi: 10.2298/FIL1406087A |
[6] | U. Aksoy, E. Karapınar, I. M. Erhan, Fixed points of generalized $\alpha$-admissible contractions on $\flat$-metric spaces with an application to boundary value problems, J. Nonlinear Convex A., 17 (2016), 1095–1108. |
[7] | G. Amirbostaghi, M. Asadi, M. R. Mardanbeigi, $m$-Convex structure on $\flat$-metric spaces, Filomat, 35 (2021), 4765–4776. https://doi.org/10.2298/FIL2114765A doi: 10.2298/FIL2114765A |
[8] | S. Ghezelloua, M. Azhini, M. Asadi, Best proximity point theorems by K, C and MT types in $\flat$-metric spaces with an application, Int. J. Nonlinear Anal. Appl., 12 (2021), 1317–1329. https://doi.org/10.22075/IJNAA.2021.19156.2060 doi: 10.22075/IJNAA.2021.19156.2060 |
[9] | M. F. Bota, E. Karapınar, O. Mleşnite, Ulam-Hyers stability for fixed-point problems via $\alpha$-$\psi$-contractive mapping in $\flat$-metric spaces, Abstr. Appl. Anal., 2013 (2013), 825293. https://doi.org/10.1155/2013/825293 doi: 10.1155/2013/825293 |
[10] | J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(\psi, \varphi)_s$-contractive mappings in ordered $\flat$-metric spaces, Fixed Point Theory Appl., 2013 (2013), 159. https://doi.org/10.1186/1687-1812-2013-159 doi: 10.1186/1687-1812-2013-159 |
[11] | V. Berinde, M. Pacurar, The early developments in fixed point theory on $\flat$-metric spaces: a brief survey and some important related aspects, Carpathian J. Math., 38 (2022), 523–538. https://doi.org/10.37193/CJM.2022.03.01 doi: 10.37193/CJM.2022.03.01 |
[12] | M. Ali, M. Arshad, $\flat$-Metric generalization of some fixed-point theorems, J. Funct. Space., 2018 (2018), 265865. https://doi.org/10.1155/2018/2658653 doi: 10.1155/2018/2658653 |
[13] | J. Brzdek, Comments on fixed point results in classes of function with values in a $\flat$-metric space, RACSAM, 116 (2022), 35. https://doi.org/10.1007/s13398-021-01173-6 doi: 10.1007/s13398-021-01173-6 |
[14] | S. G. Matthews, Partial metric topology, Research report 212, Department of Computer Science, University of Warwick, 1992. |
[15] | S. G. Matthews, Partial metric topology, Ann. NY. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x |
[16] | O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2005), 229–240. https://doi.org/10.4995/agt.2005.1957 doi: 10.4995/agt.2005.1957 |
[17] | S. J. O'Neill, Two topologies are better than one, UK: University of Warwick, 1995. |
[18] | M. P. Schellekens, A characterization of partial metrizability: domains are quantifiable, Theor. Comput. Sci., 305 (2003), 409–432. https://doi.org/10.1016/S0304-3975(02)00705-3 doi: 10.1016/S0304-3975(02)00705-3 |
[19] | K. P. Chi, E. Karapınar, T. D. Thanh, A generalized contraction principle in partial metric spaces, Math. Comput. Model., 55 (2012), 1673–1681. https://doi.org/10.1016/j.mcm.2011.11.005 doi: 10.1016/j.mcm.2011.11.005 |
[20] | E. Karapınar, U. Yüksel, Some common fixed point theorems in partial metric spaces, J. Appl. Math., 2011 (2011), 263621. https://doi.org/10.1155/2011/263621 doi: 10.1155/2011/263621 |
[21] | E. Karapınar, I. S. Yüce, Fixed point theory for cyclic generalized weak $C$-contraction on partial metric spaces, Abstr. Appl. Anal., 2012 (2012), 491542. https://doi.org/10.1155/2012/491542 doi: 10.1155/2012/491542 |
[22] | E. Karapınar, A note on common fixed-point theorems in partial metric spaces, Miskolc Math. Notes, 12 (2011), 185–191. https://doi.org/10.18514/MMN.2011.335 doi: 10.18514/MMN.2011.335 |
[23] | L. Ciric, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218 (2011), 2398–2406. https://doi.org/10.1016/j.amc.2011.07.005 doi: 10.1016/j.amc.2011.07.005 |
[24] | J. Brzdek, E. Karapınar, A. Petrusel, A fixed point theorem and the Ulam stability in generalized $dq$-metric spaces, J. Math. Anal. Appl., 467 (2018), 501–520. https://doi.org/10.1016/j.jmaa.2018.07.022 doi: 10.1016/j.jmaa.2018.07.022 |
[25] | Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial $\flat$-metric spaces, J. Inequal. Appl., 2013 (2013), 562. https://doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562 |
[26] | S. Shukla, Partial $\flat$-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. https://doi.org/10.1007/s00009-013-0327-4 doi: 10.1007/s00009-013-0327-4 |
[27] | C. Zhu, W. Xu, C. Chen, X. Zhang, Common fixed point theorems for generalized expansive mappings in partial $\flat$-metric spaces and an application, J. Inequal. Appl., 2014 (2014), 475. https://doi.org/10.1186/1029-242X-2014-475 doi: 10.1186/1029-242X-2014-475 |
[28] | N. V. Dung, V. T. L. Hang, Remarks on partial $\flat$-metric spaces and fixed point theorems, Mat. Vestn., 69 (2017), 231–240. |
[29] | M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. |
[30] | J. Caballero, J. Harjani, K. Sadarangani, A best proximity point theorem for Geraghty-contractions, Fixed Point Theory Appl., 2012 (2012), 231. https://doi.org/10.1186/1687-1812-2012-231 doi: 10.1186/1687-1812-2012-231 |
[31] | J. Zhang, Y. Su, Q. Cheng, A note on 'A best proximity point theorem for Geraghty-contractions', Fixed Point Theory Appl., 2013 (2013), 99. https://doi.org/10.1186/1687-1812-2013-99 doi: 10.1186/1687-1812-2013-99 |
[32] | N. Bilgili, E. Karapınar, K. Sadarangani, A generalization for the best proximity point of Geraghty-contractions, J. Inequal. Appl., 2013 (2013), 286. https://doi.org/10.1186/1029-242X-2013-286 doi: 10.1186/1029-242X-2013-286 |
[33] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[34] | A. Mukheimer, $\alpha$-$\psi$-$\varphi$-Contractive mappings in ordered partial $\flat$-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 168–179. http://doi.org/10.22436/jnsa.007.03.03 doi: 10.22436/jnsa.007.03.03 |
[35] | O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 190. https://doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190 |
[36] | A. Latif, J. R. Roshan, V. Parvaneh, N. Hussain, Fixed point results via $\alpha$-admissible mappings and cyclic contractive mappings in partial $\flat$-metric spaces, J. Inequal. Appl., 2014 (2014), 345. https://doi.org/10.1186/1029-242X-2014-345 doi: 10.1186/1029-242X-2014-345 |
[37] | S. H. Cho, J. S. Bae, E. Karapınar, Fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2013 (2013), 329. https://doi.org/10.1186/1687-1812-2013-329 doi: 10.1186/1687-1812-2013-329 |
[38] | H. Afshari, H. Aydi, E. Karapınar, On generalized $\alpha$-$\psi$-Geraghty contractions on $\flat$-metric spaces, Georgian Math. J., 27 (2020), 9–21. https://doi.org/10.1515/gmj-2017-0063 doi: 10.1515/gmj-2017-0063 |
[39] | A. Fulga, A. Proca, A new generalization of Wardowski fixed point theorem in complete metric spaces, Advances in the Theory of Nonlinear Analysis and its Application, 1 (2017), 57–63. https://doi.org/10.31197/atnaa.379119 doi: 10.31197/atnaa.379119 |
[40] | A. Fulga, A. M. Proca, Fixed point for $\phi_{E}$-Geraghty contractions, J. Nonlinear Sci. Appl., 10 (2017), 5125–5131. http://doi.org/10.22436/jnsa.010.09.48 doi: 10.22436/jnsa.010.09.48 |
[41] | A. Fulga, E. Karapınar, Revisiting of some outstanding metric fixed point theorems via $E$-contraction, An. Sti. U. Ovid. Co. Mat., 26 (2018), 73–97. https://doi.org/10.2478/auom-2018-0034 doi: 10.2478/auom-2018-0034 |
[42] | E. Karapınar, A. Fulga, H. Aydi, Study on Pata $E$-contractions, Adv. Differ. Equ., 2020 (2020), 539. https://doi.org/10.1186/s13662-020-02992-4 doi: 10.1186/s13662-020-02992-4 |
[43] | M. A. Alghamdi, S. Gulyaz, A. Fulga, Fixed point of Proinov $E$-contractions, Symmetry, 13 (2021), 962. https://doi.org/10.3390/sym13060962 doi: 10.3390/sym13060962 |
[44] | B. Alqahtani, A. Fulga, E. Karapınar, A short note on the common fixed points of the Geraghty contraction of type $E_{S, T}$, Demonstr. Math., 51 (2018), 233–240. https://doi.org/10.1515/dema-2018-0019 doi: 10.1515/dema-2018-0019 |
[45] | H. Aydi, A. Felhi, E. Karapınar, H. Alrubaish, M. Alshammari, Fixed points for $\alpha$-$\beta_E$-Geraghty contractions on $\flat$-metric spaces and applications to matrix equations, Filomat, 33 (2019), 3737–3750. https://doi.org/10.2298/FIL1912737A doi: 10.2298/FIL1912737A |
[46] | C. Lang, H. Guan, Common fixed point and coincidence point results for generalized $\alpha$-$\varphi_ {E}$-Geraghty contraction mappings in $\flat$-metric spaces, AIMS Mathematics, 7 (2022), 14513–14531. https://doi.org/10.3934/math.2022800 doi: 10.3934/math.2022800 |
[47] | X. D. Liu, S. S. Chang, Y. Xiao, L. C. Zhao, Some fixed point theorems concerning $(\psi, \varphi)$-type contraction in complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4127–4136. http://doi.org/10.22436/jnsa.009.06.56 doi: 10.22436/jnsa.009.06.56 |
[48] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[49] | M. Nazam, On $J_c$‐contraction and the related fixed‐point problem with applications, Math. Method. Appl. Sci., 43 (2020), 10221–10236. https://doi.org/10.1002/mma.6689 doi: 10.1002/mma.6689 |
[50] | M. Nazam, M. Hamid, H. A. Sulami, A. Hussain, Common fixed-point theorems in the partial $\flat$-metric spaces and an application to the system of boundary value problems, J. Funct. Space., 2021 (2021), 7777754. https://doi.org/10.1155/2021/7777754 doi: 10.1155/2021/7777754 |
[51] | H. Piri, P. Kumam, Some fixed point theorems concerning $F$-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 210. https://doi.org/10.1186/1687-1812-2014-210 doi: 10.1186/1687-1812-2014-210 |
[52] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38 |