The synchronization control problem of a class of chaotic systems with unknown uncertainties and outside perturbation is addressed in this article by employing an innovative adaptive sliding mode controller (SM, SMC) constructed using a disturbance observer (DO). For the synchronous error system, the external disturbances estimated by the disturbance observer cannot be measured directly. If the appropriate gain matrix is chosen, the DO can approximate the unknown external disturbances well. Then a continuous adaptive SM controller based on the DO's output is designed by using adaptive techniques and the system dimensional expansion method. The Duffing-Holmes chaotic system is finally selected to numerically test the efficiency of the suggested strategy.
Citation: Honglei Yin, Bo Meng, Zhen Wang. Disturbance observer-based adaptive sliding mode synchronization control for uncertain chaotic systems[J]. AIMS Mathematics, 2023, 8(10): 23655-23673. doi: 10.3934/math.20231203
The synchronization control problem of a class of chaotic systems with unknown uncertainties and outside perturbation is addressed in this article by employing an innovative adaptive sliding mode controller (SM, SMC) constructed using a disturbance observer (DO). For the synchronous error system, the external disturbances estimated by the disturbance observer cannot be measured directly. If the appropriate gain matrix is chosen, the DO can approximate the unknown external disturbances well. Then a continuous adaptive SM controller based on the DO's output is designed by using adaptive techniques and the system dimensional expansion method. The Duffing-Holmes chaotic system is finally selected to numerically test the efficiency of the suggested strategy.
[1] | A. Modiri, S. Mobayen, Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems, ISA Trans., 105 (2020), 33–50. http://doi.org/10.1016/j.isatra.2020.05.039 doi: 10.1016/j.isatra.2020.05.039 |
[2] | Q. Lai, A unified chaotic system with various coexisting attractors, Int. J. Bifurcat. Chaos, 31 (2021), 2150013. https://doi.org/10.1142/S0218127421500139 doi: 10.1142/S0218127421500139 |
[3] | C. Ma, J. Mou, L. Xiong, S. Banerjee, T. Liu, X. Han, Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization, Nonlinear Dyn., 103 (2021), 2867–2880. http://doi.org/10.1007/s11071-021-06276-8 doi: 10.1007/s11071-021-06276-8 |
[4] | S. Moon, J. J. Baik, J. M. Seo, Chaos synchronization in generalized Lorenz systems and an application to image encryption, Commun. Nonlinear Sci. Numer. Simul., 96 (2021), 105708. https://doi.org/10.1016/j.cnsns.2021.105708 doi: 10.1016/j.cnsns.2021.105708 |
[5] | I. Ahmad, M. Shafiq, B. Naderi, Finite-time synchronization of four-dimensional memristor-based chaotic oscillator and applied to secure communication systems, Franklin Open, 3 (2023), 100015. https://doi.org/10.1016/j.fraope.2023.100015 doi: 10.1016/j.fraope.2023.100015 |
[6] | I. Ahmad, M. Shafiq, Synchronization control of externally disturbed chaotic spacecraft in pre-assigned settling time, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 236 (2022), 87–106. https://doi.org/10.1177/09596518211018878 |
[7] | H. T. Yau, S. Y. Wu, C. L. Chen, Y. C. Li, Fractional-order chaotic self-synchronization-based tracking faults diagnosis of ball bearing systems, IEEE Trans. Ind. Electron., 63 (2016), 3824–3833. http://doi.org/10.1109/TIE.2016.2522941 doi: 10.1109/TIE.2016.2522941 |
[8] | O. Mofid, S. Mobayen, M. H. Khooban, Sliding mode disturbance observer control based on adaptive synchronization in a class of fractional-order chaotic systems, Int. J. Adapt. Control Signal Process., 33 (2019), 462–474. https://doi.org/10.1002/acs.2965 doi: 10.1002/acs.2965 |
[9] | H. T. Yau, Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos Soliton. Fract., 22 (2004), 341–347. https://doi.org/10.1016/j.chaos.2004.02.004 doi: 10.1016/j.chaos.2004.02.004 |
[10] | I. Ahmad, M. Shafiq, Oscillation free robust adaptive synchronization of chaotic systems with parametric uncertainties, Trans. Inst. Meas. Control, 42 (2020), 1977–1996. https://doi.org/10.1177/0142331220903668 doi: 10.1177/0142331220903668 |
[11] | I. Ahmad, A Lyapunov-based direct adaptive controller for the suppression and synchronization of a perturbed nuclear spin generator chaotic system, Appl. Math. Comput., 395 (2021), 125858. https://doi.org/10.1016/j.amc.2020.125858 doi: 10.1016/j.amc.2020.125858 |
[12] | W. Wei, M. Wang, D. Li, M. Zou, X. Wang, Disturbance observer based active and adaptive synchronization of energy resource chaotic system, ISA Trans., 65 (2016), 164–173. https://doi.org/10.1016/j.isatra.2016.08.012 doi: 10.1016/j.isatra.2016.08.012 |
[13] | L. M. Wang, C. K. Zhang, Exponential synchronization of memristor-based competitive neural networks with reaction-diffusions and infinite distributed delays, IEEE Trans. Neur. Net. Lear. Syst., 2020, 1–14. http://doi.org/10.1109/TNNLS.2022.3176887 doi: 10.1109/TNNLS.2022.3176887 |
[14] | L. M. Wang, H. B. He, Z. G. Zeng, Global synchronization of fuzzy memristive neural networks with discrete and distributed delays, IEEE Trans. Fuzzy Syst., 28 (2020), 2022–2034. https://doi.org/10.1109/TFUZZ.2019.2930032 doi: 10.1109/TFUZZ.2019.2930032 |
[15] | J. H. Kim, W. C. Park, E. Kim, M. Park, Fuzzy adaptive synchronization of uncertain chaotic systems, Phys. Lett. A, 344 (2005), 295–305. https://doi.org/10.1016/j.physleta.2004.11.033 doi: 10.1016/j.physleta.2004.11.033 |
[16] | Sukono, S. H. Yuningsih, E. Rusyaman, S. Vaidyanathan, A. Sambas, Investigation of chaos behavior and integral sliding mode control on financial risk model, AIMS Math., 7 (2022), 18377–18392. http://doi.org/10.3934/math.20221012 doi: 10.3934/math.20221012 |
[17] | C. Wang, J. Tang, B. Jiang, Z. Wu, Sliding-mode variable structure control for complex automatic systems: a survey, Math. Biosci. Eng., 19 (2022), 2616–2640. http://doi.org/10.3934/mbe.2022120 doi: 10.3934/mbe.2022120 |
[18] | S. Roy, S. Baldi, L. M. Fridman, On adaptive sliding mode control without a priori bounded uncertainty, Automatica, 111 (2020), 108650. https://doi.org/10.1016/j.automatica.2019.108650 doi: 10.1016/j.automatica.2019.108650 |
[19] | J. Li, W. Li, Q. Li, Sliding mode control for uncertain chaotic systems with input nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 341–348. https://doi.org/10.1016/j.cnsns.2011.04.018 doi: 10.1016/j.cnsns.2011.04.018 |
[20] | Z. Sun, W. Zhu, G. Si, Y. Ge, Y. Zhang, Adaptive synchronization design for uncertain chaotic systems in the presence of unknown system parameters: a revisit, Nonlinear Dyn., 72 (2013), 729–749. http://doi.org/10.1007/s11071-013-0749-3 doi: 10.1007/s11071-013-0749-3 |
[21] | S. C. Jeong, D. H. Ji, J. H. Park, S. C. Won, Adaptive synchronization for uncertain chaotic neural networks with mixed time delays using fuzzy disturbance observer, Appl. Math. Comput., 219 (2013), 5984–5995. http://doi.org/10.1016/j.amc.2012.12.017 doi: 10.1016/j.amc.2012.12.017 |
[22] | M. Chen, S. Y. Shao, P. Shi, Y. Shi, Disturbance-observer-based robust synchronization control for a class of fractional-order chaotic systems, IEEE Trans. Circuits Syst. II, 64 (2017), 417–421. http://doi.org/10.1109/TCSII.2016.2563758 doi: 10.1109/TCSII.2016.2563758 |
[23] | D. H. Ji, S. C. Jeong, J. H. Park, S. C. Won, Robust adaptive backstepping synchronization for a class of uncertain chaotic systems using fuzzy disturbance observer, Nonlinear Dyn., 69 (2012), 1125–1136. http://doi.org/10.1007/s11071-012-0333-2 doi: 10.1007/s11071-012-0333-2 |
[24] | W. H. Chen, J. Yang, L. Guo, S. Li, Anosov flows with stable and unstable differentiable distributions, IEEE Trans. Ind. Electron., 63 (2015), 1083–1095. http://doi.org/10.1109/tie.2015.2478397 doi: 10.1109/tie.2015.2478397 |
[25] | S. Ding, W. H. Chen, K. Mei, D. J. Murray-Smith, Disturbance observer design for nonlinear systems represented by input–output models, IEEE Trans. Ind. Electron., 67 (2019), 1222–1232. http://doi.org/10.1109/tie.2019.2898585 doi: 10.1109/tie.2019.2898585 |
[26] | J. Guerrero, J. Torres, V. Creuze, A. Chemori, Adaptive disturbance observer for trajectory tracking control of underwater vehicles, Ocean Eng., 200 (2020), 107080. http://doi.org/10.1016/j.oceaneng.2020.107080 doi: 10.1016/j.oceaneng.2020.107080 |
[27] | C. C. Fuh, H. H. Tsai, W. H. Yao, Combining a feedback linearization controller with a disturbance observer to control a chaotic system under external excitation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1423–1429. http://doi.org/10.1016/j.cnsns.2011.08.007 doi: 10.1016/j.cnsns.2011.08.007 |
[28] | E. Aslmostafa, M. J. Mirzaei, M. Asadollahi, M. A. Badamchizadeh, Synchronization problem for a class of multi-input multi-output systems with terminal sliding mode control based on finite-time disturbance observer: application to chameleon chaotic system, Chaos Soliton. Fract., 150 (2021), 111191. http://doi.org/10.1016/j.chaos.2021.111191 doi: 10.1016/j.chaos.2021.111191 |
[29] | C. M. Lin, F. Chao, Q. Zhou, A functional-link-based fuzzy brain emotional learning network for breast tumor classification and chaotic system synchronization, Int. J. Fuzzy Syst., 20 (2018), 349–365. http://doi.org/10.1007/s40815-017-0326-x doi: 10.1007/s40815-017-0326-x |
[30] | A. Khan, A. Tyagi, Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems, Pramana, 90 (2018), 67. http://doi.org/10.1007/s12043-018-1555-8 doi: 10.1007/s12043-018-1555-8 |