Research article

Soft $ \alpha $-separation axioms and $ \alpha $-fixed soft points

  • Received: 06 December 2020 Accepted: 22 March 2021 Published: 24 March 2021
  • MSC : 54A05, 54C15, 54D10, 54D15, 47H10

  • Soft set theory is a theme of interest for many authors working in various areas because of its rich potential for applications in many directions. it received the attention of the topologists who always seeking to generalize and apply the topological notions on different structures. To contribute to this research area, in this paper, we formulate new soft separation axioms, namely $ tt $-soft $ \alpha T_i\; (i = 0, 1, 2, 3, 4) $ and $ tt $-soft $ \alpha $-regular spaces. They are defined using total belong and total non-belong relations with respect to ordinary points. This way of definition helps us to generalize existing comparable properties via general topology and to remove a strict condition of the shape of soft open and closed subsets of soft $ \alpha $-regular spaces. With the help of examples, we show the relationships between them as well as with soft $ \alpha T_i\; (i = 0, 1, 2, 3, 4) $ and soft $ \alpha $-regular spaces. Also, we explore under what conditions they are kept between soft topological space and its parametric topological spaces. We characterize $ tt $-soft $ \alpha T_1 $ and $ tt $-soft $ \alpha $-regular spaces and give some conditions that guarantee the equivalence of $ tt $-soft $ \alpha T_i\; (i = 0, 1, 2) $ and the equivalence of $ tt $-soft $ \alpha T_i\; (i = 1, 2, 3) $. Further, we investigate some interrelations of them and some soft topological notions such as soft compactness, product soft spaces and sum of soft topological spaces. In the end, we study the main properties of of $ \alpha $-fixed soft point theorem.

    Citation: Tareq M. Al-shami, El-Sayed A. Abo-Tabl. Soft $ \alpha $-separation axioms and $ \alpha $-fixed soft points[J]. AIMS Mathematics, 2021, 6(6): 5675-5694. doi: 10.3934/math.2021335

    Related Papers:

  • Soft set theory is a theme of interest for many authors working in various areas because of its rich potential for applications in many directions. it received the attention of the topologists who always seeking to generalize and apply the topological notions on different structures. To contribute to this research area, in this paper, we formulate new soft separation axioms, namely $ tt $-soft $ \alpha T_i\; (i = 0, 1, 2, 3, 4) $ and $ tt $-soft $ \alpha $-regular spaces. They are defined using total belong and total non-belong relations with respect to ordinary points. This way of definition helps us to generalize existing comparable properties via general topology and to remove a strict condition of the shape of soft open and closed subsets of soft $ \alpha $-regular spaces. With the help of examples, we show the relationships between them as well as with soft $ \alpha T_i\; (i = 0, 1, 2, 3, 4) $ and soft $ \alpha $-regular spaces. Also, we explore under what conditions they are kept between soft topological space and its parametric topological spaces. We characterize $ tt $-soft $ \alpha T_1 $ and $ tt $-soft $ \alpha $-regular spaces and give some conditions that guarantee the equivalence of $ tt $-soft $ \alpha T_i\; (i = 0, 1, 2) $ and the equivalence of $ tt $-soft $ \alpha T_i\; (i = 1, 2, 3) $. Further, we investigate some interrelations of them and some soft topological notions such as soft compactness, product soft spaces and sum of soft topological spaces. In the end, we study the main properties of of $ \alpha $-fixed soft point theorem.



    加载中


    [1] M. Abbas, G. Murtaza, S. Romaguera, Soft contraction theorem, J. Nonlinear Convex Anal., 16 (2015), 423–435.
    [2] M. Abbas, G. Murtaza, S. Romaguera, Remarks on fixed point theory in soft metric type spaces, Filomat, 33 (2019), 5531–5541. doi: 10.2298/FIL1917531A
    [3] M. Akdag, A. Ozkan, Soft $\alpha$-open sets and soft $\alpha$-continuous functions, Abstr. Appl. Anal., 2014 (2014), 1–7.
    [4] M. Akdag, A. Ozkan, On soft $\alpha$-separation axioms, J. Adv. Stud. Topol., 5 (2014), 16–24.
    [5] M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. doi: 10.1016/j.camwa.2008.11.009
    [6] T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 6699092.
    [7] T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978.
    [8] T. M. Al-shami, M. A. Al-Shumrani, B. A. Asaad, Some generalized forms of soft compactness and soft Lindelöfness via soft $\alpha$-open sets, Italian J. Pure Appl. Math., 43 (2020), 680–704.
    [9] T. M. Al-shami, M. E. El-Shafei, Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone, Soft Comput., 24 (2020), 5377–5387. doi: 10.1007/s00500-019-04295-7
    [10] T. M. Al-shami, M. E. El-Shafei, $T$-soft equality relation, Turk. J. Math., 44 (2020), 1427–1441. doi: 10.3906/mat-2005-117
    [11] T. M. Al-shami, M. E. El-Shafei, M. Abo-Elhamayel, Almost soft compact and approximately soft Lindelöf spaces, J. Taibah Univ. Sci., 12 (2018), 620–630. doi: 10.1080/16583655.2018.1513701
    [12] T. M. Al-shami, L. D. R. Kočinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2019), 149–162.
    [13] T. M. Al-shami, L. D. R. Kočinac, B. A. Asaad, Sum of soft topological spaces, Mathematics, 8 (2020), 990. doi: 10.3390/math8060990
    [14] A. Aygünoǧlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. doi: 10.1007/s00521-011-0722-3
    [15] K. V. Babitha, J. J. Suntil, Soft set relations and functions, Comput. Math. Appl., 60 (2010), 1840–1849. doi: 10.1016/j.camwa.2010.07.014
    [16] S. Bayramov, C. G. Aras, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl. Math., 9 (2018), 82–93.
    [17] S. M. Boulaaras, A. Choucha, A. Zara, M. Abdalla, B. B. Cherif, Global existence and decay estimates of energy of solutions for a new class of laplacian heat equations with logarithmic nonlinearity, J. Funct. Spaces, 2021 (2021), 1–11.
    [18] S. Das, S. K. Samanta, Soft real sets, soft real numbers and their properties, J. Fuzzy Math., 20 (2012), 551–576.
    [19] S. Das, S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform., 6 (2013), 77–94.
    [20] M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat, 32 (2018), 4755–4771. doi: 10.2298/FIL1813755E
    [21] M. E. El-Shafei, T. M. Al-shami, Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem, Comput. Appl. Math., 39 (2020), 138. doi: 10.1007/s40314-020-01161-3
    [22] F. Feng, Y. M. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. doi: 10.1007/s00500-009-0465-6
    [23] T. Hida, A comprasion of two formulations of soft compactness, Ann. Fuzzy Math. Inform., 8 (2014), 511–524.
    [24] F. Kamache, S. M. Boulaaras, R. Guefaifia, N. T. Chung, B. B. Cherif, M. Abdalla, On existence of multiplicity of weak solutions for a new class of nonlinear fractional boundary value systems via variational approach, Adv. Math. Phys., 2021 (2021), 5544740.
    [25] A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481.
    [26] P. K. Maji, R. Biswas, R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562.
    [27] P. Majumdar, S. K. Samanta, On soft mappings, Comput. Math. Appl., 60 (2010), 2666–2672.
    [28] A. Menaceur, S. M. Boulaaras, A. Makhlouf, K. Rajagobal, M. A. Abul-Dahab, Limit cycles of a class of perturbed differential systems via the first-order averaging method, Complexity, 2021 (2021), 5581423.
    [29] W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. doi: 10.1016/j.camwa.2011.08.068
    [30] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31.
    [31] S. Nazmul, S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15.
    [32] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799.
    [33] M. Riaz, S. T. Tehrim, On bipolar fuzzy soft topology with decision-making, Soft Comput., 24 (2020), 18259–18272. doi: 10.1007/s00500-020-05342-4
    [34] M. Riaz, N. Çaǧman, I. Zareef, M. Aslam, N-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36 (2019), 6521–6536. doi: 10.3233/JIFS-182919
    [35] O. Tantawy, S. A. El-Sheikh, S. Hamde, Separation axioms on soft topological spaces, Ann. Fuzzy Math. Inform., 11 (2016), 511–525.
    [36] D. Wardowski, On a soft mapping and its fixed points, J. Fixed Point Theory Appl., 2013 (2013), 1–11. doi: 10.1186/1687-1812-2013-1
    [37] M. I. Yazar, Ç. Gunduz, S. Bayramov, Fixed point theorems of soft contractive mappings, Filomat, 30 (2016), 269–279. doi: 10.2298/FIL1602269Y
    [38] I. Zorlutuna, H. Çakir, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409. doi: 10.12785/amis/090147
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2178) PDF downloads(134) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog