This paper begins with an introduction to some soft topological operators that will be used to characterize several soft separation axioms followed by their main properties. Then, we define a new soft separation axiom called "soft $ T_D $-space" and analyze its main properties. We also show that this space precisely lies between soft $ T_0 $ and soft $ T_1 $-spaces. Finally, we characterize soft $ T_i $-spaces, for $ i = 0, 1, D $, in terms of the stated operators.
Citation: Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei. Soft separation axioms via soft topological operators[J]. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828
This paper begins with an introduction to some soft topological operators that will be used to characterize several soft separation axioms followed by their main properties. Then, we define a new soft separation axiom called "soft $ T_D $-space" and analyze its main properties. We also show that this space precisely lies between soft $ T_0 $ and soft $ T_1 $-spaces. Finally, we characterize soft $ T_i $-spaces, for $ i = 0, 1, D $, in terms of the stated operators.
[1] | S. Al Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. Soft Comput., 2022 (2022), 1–7. https://doi.org/10.1155/2022/9860015 doi: 10.1155/2022/9860015 |
[2] | J. C. R. Alcantud, Softarisons: Theory and practice, Neural Comput. Appl., 33 (2021), 6759–16771. https://doi.org/10.1007/s00521-021-06272-4 doi: 10.1007/s00521-021-06272-4 |
[3] | J. C. R. Alcantud, T. M. Al-shami, A. A. Azzam, Caliber and chain conditions in soft topologies, Mathematics, 9 (2021), 2349. https://doi.org/10.3390/math9192349 doi: 10.3390/math9192349 |
[4] | T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to nutrition, Comput. Appl. Math., 2022. |
[5] | T. M. Al-shami, Comments on some results related to soft separation axioms, Afr. Mat., 31 (2020), 1105–1119. https://doi.org/10.1007/s13370-020-00783-4 doi: 10.1007/s13370-020-00783-4 |
[6] | T. M. Al-shami, J. B. Liu, Two classes of infrasoft separation axioms, J. Math., 2021 (2021), 1–10. https://doi.org/10.1155/2021/4816893 doi: 10.1155/2021/4816893 |
[7] | T. M. Al-shami, A. Mhemdi, Two families of separation axioms on infra soft topological spaces, Filomat, 36 (2022), 1143–1157. |
[8] | T. M. Al-shami, A. Mhemdi, A. A. Rawshdeh, H. H. Aljarrah, Soft version of compact and Lindelöf spaces using soft somewhere dense set, AIMS Math., 6 (2021), 8064–8077. https://doi.org/10.3934/math.2021468 doi: 10.3934/math.2021468 |
[9] | M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009 |
[10] | A. Allam, T. H. Ismail, R. Muhammed, A new approach to soft belonging, Ann. Fuzzy Math. Inform., 13 (2017), 145–152. |
[11] | Z. A. Ameen, S. Al Ghour, Minimal soft topologies, New Math. Nat. Comput., 2022, 1–13. https://doi.org/10.1142/S1793005722500466 doi: 10.1142/S1793005722500466 |
[12] | B. A. Asaad, T. M. Al-shami, A. Mhemdi, Bioperators on soft topological spaces, AIMS Math., 6 (2021), 12471–12490. https://doi.org/10.3934/math.2021720 doi: 10.3934/math.2021720 |
[13] | B. A. Asaad, T. M. Al-shami, E. A. Abo-Tabl, Applications of some operators on supra topological spaces, Demonstr. Math., 53 (2020), 292–308. https://doi.org/10.1515/dema-2020-0028 doi: 10.1515/dema-2020-0028 |
[14] | A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating soft topologies via soft set operators, Symmetry, 14 (2022), 914. https://doi.org/10.3390/sym14050914 doi: 10.3390/sym14050914 |
[15] | C. E. Aull, W. J. Thron, Separation axioms between ${T}_0$ and ${T}_1$, Indagat. Math., 65 (1962), 26–37. https://doi.org/10.1016/S1385-7258(62)50003-6 doi: 10.1016/S1385-7258(62)50003-6 |
[16] | A. Baltag, S. Smets, Johan van Benthem on logic and information dynamics, Springer, 2014. |
[17] | S. Bayramov, C. G. Aras, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl. Math., 9 (2018), 82–93. |
[18] | N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016 |
[19] | M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat, 32 (2018), 4755–4771. https://doi.org/10.2298/FIL1813755E doi: 10.2298/FIL1813755E |
[20] | T. Hida, A comparison of two formulations of soft compactness, Ann. Fuzzy Math. Inform., 8 (2014), 511–525. |
[21] | A. H. Kocaman, N. Tozlu, Soft locally closed sets and decompositions of soft continuity, Ann. Fuzzy Math. Inform., 11 (2016), 173–181. |
[22] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6 |
[23] | A. Mhemdi, T. M. Al-shami, Functionally separation axioms on general topology, J. Math., 2021 (2021), 1–5. https://doi.org/10.1155/2021/5590047 doi: 10.1155/2021/5590047 |
[24] | W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. https://doi.org/10.1016/j.camwa.2011.08.068 doi: 10.1016/j.camwa.2011.08.068 |
[25] | D. Molodtsov, Soft set theory–first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[26] | S. Nazmul, S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. |
[27] | D. Pearce, L. Uridia, The topology of common belief, In: The cognitive foundations of group attitudes and social interaction, Springer, 2015. https://doi.org/10.1007/978-3-319-21732-1_7 |
[28] | J. Picado, A. Pultr, Frames and locales: Topology without points, Springer Science & Business Media, 2011. |
[29] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006 |
[30] | J. Thomas, S. J. John, A note on soft topology, J. New Results Sci., 5 (2016), 24–29. |