In this paper, the initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity is invsitgated. First, we establish the local well-posedness of solutions by means of the semigroup theory. Then by using ordinary differential inequalities, potential well theory and energy estimate, we study the conditions on global existence and finite time blow-up. Moreover, the lifespan (i.e., the upper bound of the blow-up time) of the finite time blow-up solution is estimated.
Citation: Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity[J]. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032
[1] | Xu Liu, Jun Zhou . Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032 |
[2] | Yi Cheng, Ying Chu . A class of fourth-order hyperbolic equations with strongly damped and nonlinear logarithmic terms. Electronic Research Archive, 2021, 29(6): 3867-3887. doi: 10.3934/era.2021066 |
[3] | Shuting Chang, Yaojun Ye . Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity. Electronic Research Archive, 2024, 32(11): 6225-6234. doi: 10.3934/era.2024289 |
[4] | Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005 |
[5] | Gongwei Liu . The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28(1): 263-289. doi: 10.3934/era.2020016 |
[6] | Xiao Su, Hongwei Zhang . On the global existence and blow-up for the double dispersion equation with exponential term. Electronic Research Archive, 2023, 31(1): 467-491. doi: 10.3934/era.2023023 |
[7] | Yang Liu, Wenke Li . A family of potential wells for a wave equation. Electronic Research Archive, 2020, 28(2): 807-820. doi: 10.3934/era.2020041 |
[8] | Milena Dimova, Natalia Kolkovska, Nikolai Kutev . Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. Electronic Research Archive, 2020, 28(2): 671-689. doi: 10.3934/era.2020035 |
[9] | Qianqian Zhu, Yaojun Ye, Shuting Chang . Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046 |
[10] | Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li . Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28(1): 369-381. doi: 10.3934/era.2020021 |
In this paper, the initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity is invsitgated. First, we establish the local well-posedness of solutions by means of the semigroup theory. Then by using ordinary differential inequalities, potential well theory and energy estimate, we study the conditions on global existence and finite time blow-up. Moreover, the lifespan (i.e., the upper bound of the blow-up time) of the finite time blow-up solution is estimated.
In this paper, we consider the following plate equation with Hardy-Hénon potential and polynomial nonlinearity:
{utt+Δ2u+u=σ|x|−α∗u+|u|p−2u,x∈Ω,t>0,u=∂u∂ν=0,x∈∂Ω,t>0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω, | (1.1) |
where
2≤p{<∞,n=1,2,3,4,≤2+4n−4,n≥5. | (1.2) |
The initial value
|x|−α∗u={∫Ω|x−y|−αu(y)dy,if α≠0,∫Ωu(y)dy,if α=0. |
Plate equations have been investigated for many years due to their importance in some physical areas such as vibration and elasticity theories of solid mechanics. For instance, in the case when
The potential term
Motivated by the previous studies, in this paper, we will consider a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity, i.e, problem (1.1). We mainly concern with the well-posedness, and the conditions on global existence and finite time blow-up. To state the main results of this paper, we first introduce some notations used in this paper:
● Let
CX→Y=supϕ∈X∖{0}‖ϕ‖Y‖ϕ‖X. | (1.3) |
● The norm of the Lebesgue space
● The inner product of the Hilbert space
● The norm of the Sobolev space
‖ϕ‖2H2=‖Δϕ‖2+‖ϕ‖2. |
Definition 1.1. Assume
u∈C([0,T];H20(Ω))∩C1([0,T];L2(Ω)) |
such that
∫Ωutϕdx+t∫0∫ΩΔuΔϕdxdτ+t∫0∫Ωuϕdxdτ=t∫0∫Ω(σ|x|−α∗u+|u|p−2u)ϕdxdτ+∫Ωu1ϕdx | (1.4) |
holds for any
The local-well posedness of solutions to problem (1.1) is the following theorem:
Theorem 1.2. Assume
u∈C([0,T];H20(Ω))∩C1([0,T];L2(Ω)). |
The solution
1.
2.
limt↑Tmax(‖u(t)‖H2+‖ut(t)‖)=∞, |
i.e., the solution blows up at a finite time
Furthermore, then energy
E(t)=E(0),0≤t<Tmax, | (1.5) |
where
E(t)=12‖ut‖2+J(u)(t),0≤t<Tmax, | (1.6) |
and
E(0)=E(t)|t=0=12‖u1‖2+J(u0). | (1.7) |
Moreover, we have
ddt(ut,u)=‖ut‖2−I(u). | (1.8) |
Here
J(ϕ)=12‖Δϕ‖2+12‖ϕ‖2−1p‖ϕ‖pp−σ2∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy, | (1.9) |
and
I(ϕ)=‖Δϕ‖2+‖ϕ‖2−‖ϕ‖pp−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy. | (1.10) |
Based on Theorem 1.2, we study the conditions on global existence and finite time blow-up. The first result is about the case that the initial energy is non-positive.
Theorem 1.3. Assume
1.
2.
Then the weak solution got in Theorem 1.2 blows up in finite time, i.e.,
1. If
Tmax≤{2‖u0‖2(p−2)(u0,u1), if E(0)≤0 and (u0,u1)>0;4‖u0‖(p−2)√−2E(0), if E(0)<0 and (u0,u1)=0;¯T, if E(0)<0 and (u0,u1)<0, |
where
¯T=−4E(0)‖u0‖2+2(−(u0,u1)+√(u0,u1)2−2E(0)‖u0‖2)2−2E(0)(p−2)√(u0,u1)2−2E(0)‖u0‖2. |
2. If
\begin{equation*} {T_{\max}}\leq\left\{ \begin{array}{ll} \frac{(p\Lambda+2)\|u_0\|^2}{(p-2)(u_0, u_1)}, \; \; \; & \ if\ E(0)\leq 0 \ and\ (u_0, u_1) > 0; \\ \frac{2(p\Lambda+2)\|u_0\|}{(p-2)\sqrt{-2E(0)}}, \; \; \; & \ if\ E(0) < 0 \ and\ (u_0, u_1) = 0. \end{array} \right. \end{equation*} |
Here,
σ∗=infϕ∈H20(Ω)∖{0}|‖Δϕ‖2+‖ϕ‖2∫Ω∫Ω|x−y|−αϕ(x)ϕ(y)dxdy| | (1.11) |
and
Λ={(|σ|−σ∗)R−α|Ω|p2‖u0‖2−p,if α≤0;κ(|σ|−σ∗)|Ω|(p−2)22p+p(2n−α)−2nn‖u0‖2−p,if 0<α<n, | (1.12) |
where
R=supx,y∈Ω|x−y|,κ=πα2Γ(n−α2)Γ(2n−α2){Γ(n2)Γ(n)}−n−αn. |
Remark 1. There are two remarks on the above theorem.
1. Firstly, by Lemma 2.2, if
σ∗≥{Rα(CH20→L1)−2,α∈(−∞,0],1κ(CH20→L2n2n−α)−2,α∈(0,n), |
where
2. Secondly, for
Theorem 1.3 is above the case
d=inf{J(ϕ):ϕ∈N}, | (1.13) |
where
N={ϕ∈H20(Ω)∖{0}:I(ϕ)=0}. | (1.14) |
Here
Remark 2. If we assume
d≥p−22p((1−|σ|σ∗)C2H20→Lp)pp−2, |
where
Theorem 1.4. (Global existence for
Theorem 1.5. (Blow-up for
1.
2.
where
Tmax≤{2‖u0‖2(p−2)(u0,u1), if E(0)≤d and (u0,u1)>0;4‖u0‖(p−2)√2(d−E(0)), if E(0)<d and (u0,u1)=0;ˆT, if E(0)<d and (u0,u1)<0, |
where
ˆT=4(d−E(0))‖u0‖2+2(−(u0,u1)+√(u0,u1)2+(2(d−E(0)))‖u0‖2)2(2(d−E(0)))(p−2)√(u0,u1)2+(2(d−E(0)))‖u0‖2. |
The organization of the rest of this paper is as follows: In Section 2, we give some preliminaries, which will be used in this paper; In Section 3, we study the well-posed of solutions by semigroup theory and prove Theorem 1.2; In Section 4, we study the conditions on global existence and finite time blow-up and prove Theorems 1.3, 1.4 and 1.5.
The following well-known Hardy-Littlewood-Sobolev inequality can be found in [31]:
Lemma 2.1. Let
1q+n−θn+1r=2. |
Let
|∫Rn∫Rnu(x)v(y)|x−y|n−θdxdy|≤κ‖u‖q‖v‖r. |
If
q=r=2nn+θ, |
then
C=κ:=πn−θ2Γ(θ2)Γ(n+θ2){Γ(n2)Γ(n)}−θn. | (2.15) |
If
|∫Ω∫Ωu(x)v(y)|x−y|n−θdxdy|≤C‖u‖q‖v‖r. | (2.16) |
Lemma 2.2. Let
σ∗≥{Rα(CH20→L1)−2,α∈(−∞,0],1κ(CH20→L2n2n−α)−2,α∈(0,n), |
where
R=supx,y∈Ω|x−y|<∞. |
Proof.
|∫Ω∫Ω|x−y|−αϕ(x)ϕ(y)dxdy|≤(∫Ω|ϕ(x)|dx)2R−α≤C2H20→L1R−α(‖Δϕ‖2+‖ϕ‖2). |
|∫Ω∫Ω|x−y|−αϕ(x)ϕ(y)dxdy|≤κ‖ϕ‖22n2n−α≤κC2H20→L2n2n−α(‖Δϕ‖2+‖ϕ‖2). |
Lemma 2.3. [29,30] Suppose
F′′(t)F(t)−(1+r)(F′(t))2≥0, | (2.17) |
where
T≤F(0)rF′(0)<+∞ | (2.18) |
and
Lemma 2.4. Assume
d=inf{supλ≥0J(λϕ):ϕ∈H20(Ω)∖{0}}, | (2.19) |
and
d≥p−22p((1−|σ|σ∗)C2H20→Lp)pp−2, | (2.20) |
where
Proof. Firstly, we prove (2.19). For any
ˆλ=(‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ω|x−y|−αϕ(x)ϕ(y)dxdy‖ϕ‖pp)1p−2, | (2.21) |
such that
supλ≥0J(λϕ)=J(ˆλϕ),ˆλϕ∈N. | (2.22) |
Then,
inf{supλ≥0J(λϕ):ϕ∈H20(Ω)∖{0}}=inf{J(ˆλϕ):ϕ∈H20(Ω)∖{0}}≥inf{J(ϕ):ϕ∈N}. |
On the other hand, for any
inf{J(ϕ):ϕ∈N}=inf{supλ≥0J(λϕ):ϕ∈N}≥inf{supλ≥0J(λϕ):ϕ∈H20(Ω)∖{0}}. |
Then (2.19) follows from the above two inequalities.
Secondly, we prove (2.20), by (1.11), we have
d=p−22pinf{ˆλp‖ϕ‖pp:ϕ∈H20(Ω)∖{0}}=p−22p(infϕ∈H20(Ω)∖{0}‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ω|x−y|−αϕ(x)ϕ(y)dxdy‖ϕ‖2p)pp−2≥p−22p(infϕ∈H20(Ω)∖{0}‖Δϕ‖2+‖ϕ‖2−|σ||∫Ω∫Ω|x−y|−αϕ(x)ϕ(y)dxdy|‖ϕ‖2p)pp−2≥p−22p(infϕ∈H20(Ω)∖{0}(1−|σ|σ∗)‖Δϕ‖2+‖ϕ‖2‖ϕ‖2p)pp−2=p−22p((1−σσ∗)C2H20→Lp)pp−2. | (2.23) |
Lemma 2.5. Assume
W={ϕ∈H20(Ω):I(ϕ)>0,J(ϕ)<d}∪{0}. | (2.24) |
V={u∈H20(Ω):I(ϕ)<0,J(ϕ)<d}, | (2.25) |
where
‖ϕ‖pp≤2pdp−2,∀ϕ∈W | (2.26) |
and
‖Δϕ‖2+‖ϕ‖2≥((1−|σ|σ∗)(CH20→Lp)−p)2p−2,∀ϕ∈V, | (2.27) |
where
W1={ϕ∈H20(Ω):J(ϕ)<d,‖Δϕ‖2+‖ϕ‖2<2pdp−2+σCϕ}, | (2.28) |
and
V1={ϕ∈H20(Ω):J(ϕ)<d,‖Δϕ‖2+‖ϕ‖2>2pdp−2+σCϕ}. | (2.29) |
Here,
Cϕ=∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy. |
Proof. Step 1. We prove (2.26). By the definition of
2J(ϕ)−I(ϕ)=p−2p‖ϕ‖pp,∀ϕ∈H20(Ω). | (2.30) |
For any
Step 2. We prove (2.27). For any
(CH20→Lp)p(‖Δϕ‖2+‖ϕ‖2)p2≥‖ϕ‖pp>‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy≥(1−|σ|σ∗)(‖Δϕ‖2+‖ϕ‖2), | (2.31) |
which implies (2.27).
Step 3. We show that
Firstly, for any
‖Δϕ‖2+‖ϕ‖2>2pdp−2+σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy,12(‖Δϕ‖2+‖ϕ‖2)<d+1p‖ϕ‖pp+σ2∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy, |
which implies
‖ϕ‖pp>2pdp−2. |
Thus, by the definition of
I(ϕ)=‖Δϕ‖2+‖ϕ‖2−‖ϕ‖pp−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy≤2d−p−2p‖ϕ‖pp<0, |
which, together with
Secondly, we prove
‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy≥(1−|σ|σ∗)((1−|σ|σ∗)(CH20→Lp)−p)2p−2>0. |
Then, in view of
‖ϕ‖pp>‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy, |
we get
‖ϕ‖2pp−2p>(‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy)2p−2⇔‖ϕ‖2pp−2p>(‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy)pp−2−1⇔‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy >(‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy‖ϕ‖2p)pp−2, |
which, together with the second line of (2.23), implies
‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy>2pdp−2. |
Since
Step 4. We show that
Firstly we prove
‖Δϕ‖2+‖ϕ‖2−σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy>‖ϕ‖pp,12(‖Δϕ‖2+‖ϕ‖2)<d+1p‖u‖pp+12σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy. |
The above two inequalities imply
Δϕ‖2+‖ϕ‖2<2pdp−2+σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy, |
which, together with
Secondly we prove
J(ϕ)<d(by (2.28)), | (2.32) |
‖Δϕ‖2+‖ϕ‖2<2pdp−2+σ∫Ω∫Ωϕ(x)ϕ(y)|x−y|αdxdy(by (2.28)), | (2.33) |
I(ϕ)≤0,ϕ≠0(by (2.24) and (2.32)). | (2.34) |
If
Lemma 2.6. Assume
u∈C([0,Tmax);H20(Ω))∩C1([0,Tmax);L2(Ω)) |
be the maximal weak solution to (1.1) with initial value
1. If there exists a
2. If there exists a
where
Proof. Firstly, we proof the first part by contradiction argument. Actually, if the conclusion is incorrect, by using
u(t)∈W,t∈[t0,t1); and u(t1)∈∂W. |
Since the energy is conservative (see (1.5)),
J(u)(t1)≤E(t1)=E(t0)<d. | (2.35) |
Then by
Secondly, we proof the second part. In the case
E(t0)=d and (ut,u)t=t0≥0 |
in detail. Arguing by contradiction, if the conclusion is incorrect, by
Due to
‖Δu(t1)‖2+‖u(t1)‖2≥((1−|σ|σ∗)(CH20→Lp)−p)2p−2. | (2.36) |
If
If
d=E(t0)=12‖ut(t1)‖2+J(u)(t1). | (2.37) |
Combining (2.37) and
‖ut(t1)‖2=0. | (2.38) |
Utilizing Cauchy-Schwartz's inequality, we obtain that
(ut,u)|t=t1≤‖ut(t1)‖‖u(t1)‖=0. | (2.39) |
Integrating (1.8) over
(ut,u)+t∫0I(u)(τ)dτ−t∫0‖uτ‖2dτ=(u1,u0),0≤t<Tmax. | (2.40) |
By (2.40), we get
(ut,u)|t=t0+t0∫0I(u)(τ)dτ−t0∫0‖uτ‖2dτ=(ut,u)|t=t1+t1∫0I(u)(τ)dτ−t1∫0‖uτ‖2dτ. |
Then,
(ut,u)|t=t0−(ut,u)|t=t1=t1∫t0I(u)(τ)dτ−t1∫t0‖uτ‖2dτ. |
Since
(ut,u)|t=t1=(ut,u)|t=t0−t1∫t0I(u)(τ)dτ+t1∫t0‖uτ‖2dτ>0, |
which contradicts (2.39).
In this section, we study local well-posedness of solutions to (1.1) by semigroup theory. To this end, first, we introduce some fundamental theory on semigroup theory.
Suppose that
‖Φ‖H=√(Φ,Φ)H,Φ∈H. |
Suppose
‖F(U)−F(V)‖H≤M‖U−V‖H. | (3.41) |
Consider the following abstract semilinear evolution equation
{Ut+AU=F(U),t>0,U(0)=U0, | (3.42) |
where
First, we introduce the Lumer-Phillips theorem (see, for example, [38,Theorem 1.2.3] and [54,Lemma 2.2.3]):
Lemma 3.1. The necessary and sufficient conditions for
1.
2.
Here
Next, we introduce the local well-posedness results for (3.42), which can be found in [54,Theorems 2.5.4 and 2.5.5]:
Lemma 3.2. Suppose that
U(t)=etAU0+t∫0e(t−τ)AF(U(τ))dτ, t∈[0,T]. | (3.43) |
The solution
1.
2.
limt↑Tmax‖U(t)‖H=∞, |
i.e., the solution blows up at a finite time
Furthermore, if
By introduction
A=(0I−Δ2−I0),F(U)=(0σ|x|−α∗u+|u|p−2u), | (3.44) |
where
{Ut=AU+F(U)x∈Ω,t>0,U=∂U∂ν=0,x∈∂Ω,t>0U(x,0)=U0(x),x∈Ω. | (3.45) |
In the next lemma, we show
Lemma 3.3. Let
Proof. Let
(Φ,Ψ)H:=∫Ω(Δφ1Δψ1+φ1ψ1+φ2ψ2)dx, | (3.46) |
where
‖Φ‖H=(Φ,Φ)H=‖ϕ1‖H2+‖φ2‖. |
Let
A:D(A)=(H4(Ω)∩H20(Ω))×H20(Ω)⊂H→H. |
Next we show
(AΦ,Φ)H=((φ2,−Δ2φ1−φ1),(φ1,φ2))H=∫Ω(Δφ2Δφ1+φ2φ1+(−Δ2φ1−φ1)φ2)dx=0. | (3.47) |
Next we show
{Δ2u+2u=f1+f2,x∈Ω,u=∂u∂ν=0,x∈∂Ω | (3.48) |
admits a unique solution
(I−A)U=(I−IΔ2+II)(uv)=(u−vΔ2u+u+v)=(f1Δ2u+2u−f1)=(f1f2)=f, |
which implies
Next, we show (3.45) admits a mild solution.
Lemma 3.4. Assume
U(t)=etAU0+t∫0e(t−τ)AF(U(τ))dτ,0≤t≤T. | (3.49) |
The solution
1.
2.
limt↑Tmax‖U(t)‖H=limt↑Tmax(‖u(t)‖H2+‖ut(t)‖)=∞, |
i.e., the solution blows up at a finite time
Furthermore, it holds
‖U(t)‖H=‖U0‖H+2t∫0(F(U(τ)),U(τ))Hdτ. | (3.50) |
Proof. Let
σ|x|−α∗u+|u|p−2u∈L2(Ω),∀u∈H20(Ω). | (3.51) |
Since
Next we show
Case 1.
R=supx,y∈Ω|x−y|<∞. |
Then, by Hölder's inequality,
‖|x|−α∗u‖2=∫Ω(∫Ω|x−y|−αu(y)dy)2dx≤R−2α|Ω|(∫Ωu(y)dy)2≤R−2α|Ω|2‖u‖2<∞. | (3.52) |
Case 2.
12n2n−α+αn+12n2n−α=2, |
by using (2.16) with
∫Ω(|x|−α∗u)(x)ϕ(x)dx=∫Ω∫Ωu(y)ϕ(x)|x−y|αdxdy≤κ‖u‖2n2n−α‖ϕ‖2n2n−α≤κC2Ω‖u‖‖ϕ‖. |
Then we get
‖|x|−α∗u‖=supϕ∈L2(Ω),‖ϕ‖=1∫Ω(|x|−α∗u)(x)ϕ(x)dx≤κC2Ω‖u‖<∞. | (3.53) |
So (3.51) is true.
‖U1‖H=‖u1‖H2+‖v1‖≤M,‖U2‖H=‖u2‖H2+‖v2‖≤M, | (3.54) |
where
χ={R−α|Ω|,α≤0κC2Ω,0<α<n. |
Then, by (3.52) and (3.53),
‖F(U1)−F(U2)‖H≤|σ|‖|x|−α∗(u1−u2)‖+‖|u1|p−2u1−|u2|p−2u2‖≤|σ|χ‖u1−u2‖+(p−2)‖1∫0|θu1+(1−θ)u2|p−2dθ(u1−u2)‖. |
Case 1.
‖1∫0|θu1+(1−θ)u2|p−2dθ(u1−u2)‖≤‖1∫0|θu1+(1−θ)u2|p−2dθ‖∞‖u1−u2‖≤(‖u1‖∞+‖u2‖∞)p−2‖u1−u2‖≤(2CH20→L∞M)p−2‖u1−u2‖. |
Case 2.
‖1∫0|θu1+(1−θ)u2|p−2dθ(u1−u2)‖2≤(∫Ω(1∫0|θu1+(1−θ)u2|p−2dθ)n2dx)n4‖u1−u2‖22nn−4≤2np2(CH20→L2nn−4)2(∫Ω(|u1|n(p−2)2+|u2|n(p−2)2)dx)n4‖u1−u2‖2H2≤2np2+n4(CH20→L2nn−4)2(CH20→Ln(p−2)2M)n2(p−2)8‖u1−u2‖2H2 |
In view of the above three inequalities, we get
Next we prove (3.50). Suppose firstly
12ddt‖U(t)‖2H=(U,Ut)H=(U,A(U))+(U,F(U))=(U,F(U)),0≤t<Tmax. |
For fixed
In general case
Proof of Theorem 1.2. Step 1. Existence of maximal weak solution. By Lemma 3.4 and Definition 1.1, to show the existence of maximal weak solution, we only need to prove the mild solution
We denote the inner produce of the Hilbert space
((U,V))=∫Ω(u1v1+u2v2)dx,∀U=(u1,u2),V=(v1,v2)∈L2(Ω)×L2(Ω). |
Since
((U,Φ))=((etAU0,Φ))+((t∫0e(t−τ)AF(U(τ)),Φ)). |
We differentiate to obtain
ddt((U,Φ))=ddt((etAU0,Φ))+ddt((t∫0e(t−τ)AF(U(τ)),Φ)). | (3.55) |
Now, using the standard properties of the semigroup (see for example, [54,Chapter 2]), we obtain
ddt((etAU0,Φ))=((etAU0,A∗Φ))+((etAU0,Φt)) | (3.56) |
where
A∗=(0−Δ2−II0) |
is the adjoint operator of
ddt((t∫0e(t−τ)AF(U(τ)),Φ))=((F(U(t)),Φ))+((t∫0e(t−τ)AF(U(τ)),A∗Φ))+((t∫0e(t−τ)AF(U(τ)),Φt)). | (3.57) |
Then it follows from (3.55)-(3.57) and (3.49) that
ddt((U,Φ))=((F(U(t)),Φ))+((U,A∗Φ))+((U,Φt)). | (3.58) |
Since
((U,Φ))=∫Ωutϕdx,((F(U(t)),Φ))=∫Ω(σ|x|−α∗u+|u|p−2u)ϕdx,((U,A∗Φ))=(((u,ut),(−Δ2ϕ−ϕ,0)))=−∫Ω(uΔ2ϕ+uϕ)dx,((U,Φt))=∫Ωutϕtdx. |
Then it follows from (3.58) that
ddt∫Ωutϕdx+∫Ω(uΔ2ϕ+uϕ)dx=∫Ω(σ|x|−α∗u+|u|p−2u)ϕdx+∫Ωutϕtdx. |
Since
ddt∫Ωutϕdx+∫Ω(ΔuΔϕ+uϕ)dx=∫Ω(σ|x|−α∗u+|u|p−2u)ϕdx+∫Ωutϕtdx. | (3.59) |
Note
Step 2. Proof of
u(t)∈C([0,Tmax);H20(Ω)) and ut∈C([0,Tmax);L2(Ω)), |
by taking
ddt(ut,u)=‖ut‖2−(=I(u)⏞‖Δu‖2+‖u‖2−‖u‖pp−σ∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy)∈C[0,Tmax), |
i.e,
Step 3. Proof of the equality (1.5). The energy identity (1.5) follows from (3.50) directly. In fact by using
‖U‖H=‖Δu‖2+‖u‖2+‖ut‖2,(F(U),U)H=ddt(σ2∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy+1p‖u‖pp). |
Then by (3.50), we get (1.5).
Proof of Theorem 1.3. Let
E(t)=E(0)≤0,0≤t<Tmax. |
By the definitions of
I(u)=2J(u)−p−2p‖u‖pp,I(u)=pJ(u)−p−22(‖Δu‖2+‖u‖2−σ∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy). |
By (1.5) and (1.6), it follows
I(u)=2E(0)−‖ut‖2−p−2p‖u‖pp | (4.60) |
and
I(u)=pE(0)−p2‖ut‖2−p−22(‖Δu‖2+‖u‖2−σ∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy). | (4.61) |
By (1.11), we get
|σ∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|≤‖Δu‖2+‖u‖2 if |σ|≤σ∗. | (4.62) |
In the following we divide the proof into two cases:
Case 1.
I(u)≤pE(0)−p2‖ut‖2. | (4.63) |
Let
h(t)=‖u(t)‖2+β(t+γ)2,0≤t<Tmax, | (4.64) |
where
h′(t)=2(ut,u)+2β(t+γ), | (4.65) |
h″(t)=2‖ut‖2−2I(u)(t)+2β≥−2pE(0)+(p+2)‖ut‖2+2β. | (4.66) |
By Cauchy-Schwartz's inequality,
(h′(t))2≤4(‖ut‖‖u‖+β(t+γ))2=4(‖u‖2‖ut‖2+β2(t+γ)2+2β(t+γ)‖u‖‖ut‖)≤4(‖u‖2‖ut‖2+β2(t+γ)2+β(t+γ)2‖ut‖2+β‖u‖2)≤4((‖u‖2+β(t+γ)2)(‖ut‖2+β))=4h(t)(‖ut‖2+β). | (4.67) |
Then by (4.66) and (4.67), it follows
h″(t)h(t)−(1+p−24)(h′(t))2≥p(−2E(0)−β)h(t)≥0 for 0≤β≤−2E(0). | (4.68) |
Subcase 1.
ˆT≤h(0)p−24h′(0)=2‖u0‖2(p−2)(u0,u1). |
Subcase 2.
β=−2E(0) and γ=‖u0‖√β, |
then
ˆT≤h(0)p−24h′(0)=4‖u0‖(p−2)√−2E(0). |
Subcase 3.
β=−2E(0),γ=−(u0,u1)+√(u0,u1)2+β‖u0‖2β, |
then,
h(0)=‖u0‖2+βγ2=‖u0‖2+(−(u0,u1)+√(u0,u1)2+β‖u0‖2)2/β>0,h′(0)=2(u0,u1)+2βγ=2√(u0,u1)2+β‖u0‖2)>0. |
Then, it follows from Lemma 2.3 that
ˆT≤h(0)p−24h′(0)=2(‖u0‖2+(−(u0,u1)+√(u0,u1)2+β‖u0‖2))2β)(p−2)√(u0,u1)2+β‖u0‖2)=2β‖u0‖2+2(−(u0,u1)+√(u0,u1)2+β‖u0‖2)2β(p−2)√(u0,u1)2+β‖u0‖2=−4E(0)‖u0‖2+2(−(u0,u1)+√(u0,u1)2−2E(0)‖u0‖2)2−2E(0)(p−2)√(u0,u1)2−2E(0)‖u0‖2 |
Case 2.
|∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|≤R−α(∫Ω|u|dx)2≤R−α|Ω|2(p−1)p‖u‖2p. | (4.69) |
12n2n−α+αn+12n2n−α=2 |
and
|∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|≤κ‖u‖22n2n−α≤κ|Ω|p(2n−α)−2nn‖u‖2p, | (4.70) |
where
Let
Θ={R−α|Ω|2(p−1)p,if α≤0,κ|Ω|p(2n−α)−2nn,if 0<α<n. |
By (4.69) and (4.70), we get
|∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|≤Θ‖u‖2p. | (4.71) |
Subcase 1.
ddt(ut,u)≥0. |
Then
ddt‖u(t)‖2=(ut,u)≥(u1,u0)≥0, |
and then
‖u0‖2≤‖u‖2≤|Ω|p−2p‖u‖2p, |
which, together with (4.71) implies
|∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|≤Θ‖u‖2−pp‖u‖pp≤Θ|Ω|(p−2)22p‖u0‖2−p‖u‖pp. | (4.72) |
In view of (1.11), (4.61) and (4.72), we obtain
I(u)≤pE(0)−p2‖ut‖2−p−22(‖Δu‖2+‖u‖2−|σ||∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|)=pE(0)−p2‖ut‖2−p−22(‖Δu‖2+‖u‖2−σ∗|∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|)+p−22(|σ|−σ∗)|∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|≤pE(0)−p2‖ut‖2+p−22Λ‖u‖pp, | (4.73) |
where
Λ=(|σ|−σ∗)Θ|Ω|(p−2)22p‖u0‖2−p. | (4.74) |
It follows
I(u)≤2p(Λ+1)pΛ+2E(0)−p(Λ+1)pΛ+2‖ut‖2 | (4.75) |
Let
h′(t)=2(ut,u)+2β(t+γ) | (4.76) |
and
h″(t)=2‖ut‖2−2I(u)(t)+2β≥−4p(Λ+1)pΛ+2E(0)+(2p(Λ+1)pΛ+2+2)‖ut‖2+2β. | (4.77) |
Then it follows from (4.67) that
h″(t)h(t)−(1+p−22(pΛ+2))(h′(t))2≥2p(Λ+1)pΛ+2(−2E(0)−β)h(t)≥0 for 0≤β≤−2E(0). | (4.78) |
ˆT≤h(0)p−22(pΛ+2)h′(0)=(pΛ+2)‖u0‖2(p−2)(u0,u1). |
β=−2E(0) and γ=‖u0‖√β, |
then
ˆT≤h(0)p−22(pΛ+2)h′(0)=2(pΛ+2)‖u0‖(p−2)√−2E(0). |
Subcase 2.
By (4.60),
ddt(ut,u)≥−I(u)(t)≥−2E(0)>0. |
Integrating this inequality from
(ut,u)≥(u0,u1)−2E(0)t. |
Let
Proof of Theorem 1.4. Let
Step 1.
‖Δu‖2+‖u‖2<2pdp−2+σ∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy,0≤t<Tmax. | (4.79) |
By (1.11), it follows
|∫Ω∫Ωu(x,t)u(y,t)|x−y|αdxdy|≤1σ∗(‖Δu‖2+‖u‖2), |
which, together with (4.79) and
‖Δu‖2+‖u‖2≤(1−|σ|σ∗)−12pdp−2,0≤t<Tmax. | (4.80) |
Since
‖ut‖2=2E(0)−2J(u)(t)≤2d−I(u)<2d,0≤t<Tmax. | (4.81) |
By (4.80), (4.81), and Theorem 1.2, we get
Step 2.
J(u)(t)≤d,t∈[0,Tmax) and J(u0)=d. |
If
● there exists a constant
In fact, if the claim is not true, there must exists a constant
Proof of Theorem 1.5. Let
If
Since
I(u)≤pE(0)−p2‖ut‖2−pd,0≤t<Tmax. | (4.82) |
Let
h′(t)=2(ut,u)+2β(t+γ), | (4.83) |
h″(t)=2‖ut‖2−2I(u)(t)+2β≥−2pE(0)+(p+2)‖ut‖2+2pd+2β. | (4.84) |
Then it follows from (4.67) that
h″(t)h(t)−(1+p−24)(h′(t))2≥p[2(d−E(0))−β]≥0 for 0≤β≤2(d−E(0)). | (4.85) |
Case 1.
ˆT≤h(0)p−24h′(0)=2‖u0‖2(p−2)(u0,u1). |
Case 2.
β=2(d−E(0)),γ=‖u0‖√β, |
then
ˆT≤h(0)p−24h′(0)=4‖u0‖(p−2)√2(d−E(0)). |
Case 3.
β=2(d−E(0)),γ=−(u0,u1)+√(u0,u1)2+β‖u0‖2)β, |
then,
h(0)=‖u0‖2+βγ2=‖u0‖2+(−(u0,u1)+√(u0,u1)2+β‖u0‖2))2/β>0,h′(0)=2(u0,u1)+2βγ=2√(u0,u1)2+β‖u0‖2)>0. |
Then, it follows from Lemma 2.3 that
ˆT≤h(0)p−24h′(0)=2(‖u0‖2+(−(u0,u1)+√(u0,u1)2+β‖u0‖2))2β)(p−2)√(u0,u1)2+β‖u0‖2)=2β‖u0‖2+2(−(u0,u1)+√(u0,u1)2+β‖u0‖2)2β(p−2)√(u0,u1)2+β‖u0‖2 |
=4(d−E(0))‖u0‖2+2(−(u0,u1)+√(u0,u1)2+(2(d−E(0)))‖u0‖2)2(2(d−E(0)))(p−2)√(u0,u1)2+(2(d−E(0)))‖u0‖2. |
The authors would like to thank the referees for the comments and valuable suggestions.
[1] |
Influence of the Hardy potential in a semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A (2009) 139: 897-926. ![]() |
[2] |
Strong regularizing effect of a gradient term in the heat equation with the Hardy potential. J. Funct. Anal. (2010) 258: 1247-1272. ![]() |
[3] |
A remark on the existence properties of a semilinear heat equation involving a Hardy-Leray potential. J. Evol. Equ. (2015) 15: 239-250. ![]() |
[4] |
M. Bawin, Electron-bound states in the field of dipolar molecules, Phys. Rev. A, 70 (2004), 022505. doi: 10.1103/PhysRevA.70.022505
![]() |
[5] |
M. Bawin and S. A. Coon, Neutral atom and a charged wire: From elastic scattering to absorption, Phys. Rev. A, 63 (2001), 034701. doi: 10.1103/PhysRevA.63.034701
![]() |
[6] |
M. Bawin and S. A. Coon, Singular inverse square potential, limit cycles, and self-adjoint extensions, Phys. Rev. A, 67 (2003), 042712. doi: 10.1103/PhysRevA.67.042712
![]() |
[7] |
M. Bawin, S. A. Coon and B. R. Holstein, Anions and anomalies, Int. J. Mod. Phys. A, (2007), 19–28. doi: 10.1142/9789812770301_0003
![]() |
[8] |
S. R. Beane, P. F. Bedaque, L. Childress, A. Kryjevski, J. McGuire and U. van Kolck, Singular potentials and limit cycles, Phys. Rev. A, 64 (2001), 042103. doi: 10.1103/PhysRevA.64.042103
![]() |
[9] |
Near-horizon conformal structure of black holes. Phys. Lett. B (2001) 55: 191-196. ![]() |
[10] |
Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. J. Differential Equations (2015) 258: 4424-4442. ![]() |
[11] |
Stability of standing waves for a nonlinear Klein-Gordon equation with delta potentials. J. Differential Equations (2019) 268: 353-388. ![]() |
[12] |
Probing a singular potential with cold atoms: A neutral atom and a charged wire. Phys. Rev. Lett. (1998) 81: 737-741. ![]() |
[13] |
Global existence and blowup for a class of the focusing nonlinear Schrödinger equation with inverse-square potential. J. Math. Anal. Appl. (2018) 468: 270-303. ![]() |
[14] | E. H. Dowell, Aeroelasticity of Plates and Shells, Nordhoff, Leyden, 1973. |
[15] |
E. H. Dowell, A Modern Course in Aeroelasticity, Solid Mechanics and its Applications, 217. Springer, Cham, 2015. doi: 10.1007/978-3-319-09453-3
![]() |
[16] | Weakly-bound states of 3 resonantly-interacting particles. Sov. J. Nucl. Phys. (1971) 12: 589-595. |
[17] |
Stability results for the wave equation with indefinite damping. J. Differential Equations (1996) 132: 338-352. ![]() |
[18] | J. Fröhlich and E. Lenzmann., Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Séminaire: Équations aux Dérivées Partielles, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, (2004), 26 pp. |
[19] |
Horizon states for AdS black holes. Nucl. Phys. B (2000) 583: 291-303. ![]() |
[20] |
Systems of nonlinear wave equations with damping and supercritical boundary and interior sources. Trans. Amer. Math. Soc. (2014) 366: 2265-2325. ![]() |
[21] |
Existence of the global attractor for the plate equation with nonlocal nonlinearity in Rn. Discrete Contin. Dyn. Syst. Ser. B (2016) 21: 151-172. ![]() |
[22] |
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math. Z. (2018) 288: 1273-1298. ![]() |
[23] |
The energy-critical NLS with inverse-square potential. Discrete Contin. Dyn. Syst. (2017) 37: 3831-3866. ![]() |
[24] | The focusing cubic NLS with inverse-square potential in three space dimensions. Differential Integral Equations (2017) 30: 161-206. |
[25] |
Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. (2011) 62: 1065-1082. ![]() |
[26] |
Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary. J. Differential Equations (1989) 79: 340-381. ![]() |
[27] |
Finite-dimensionality of attractors associated with von Kármán plate equations and boundary damping. J. Differential Equations (1995) 117: 357-389. ![]() |
[28] | Electron capture by polar molecules. Phys. Rev. (1967) 153: 1-4. |
[29] |
Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=−Au+F(u). Trans. Amer. Math. Soc. (1974) 192: 1-21. ![]() |
[30] |
Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. (1974) 5: 138-146. ![]() |
[31] |
E. H. Lieb and M. Loss, Analysis, Second edition, Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014
![]() |
[32] |
V. Liskevich, A. Shishkov and Z. Sobol, Singular solutions to the heat equations with nonlinear absorption and Hardy potentials, Commun. Contemp. Math., 14 (2012), 1250013, 28 pp. doi: 10.1142/S0219199712500137
![]() |
[33] |
G. W. Liu and H. W. Zhang, Well-posedness for a class of wave equation with past history and a delay, Z. Angew. Math. Phys., 67 (2016), Art. 6, 14 pp. doi: 10.1007/s00033-015-0593-z
![]() |
[34] |
Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete Contin. Dyn. Syst. Ser. B (2018) 23: 4595-4616. ![]() |
[35] |
On potential wells and vacuum isolating of solutions for semilinear wave equations. J. Differential Equations (2003) 192: 155-169. ![]() |
[36] |
A class of fourth order wave equations with dissipative and nonlinear strain terms. J. Differential Equations (2008) 244: 200-228. ![]() |
[37] |
Decay estimate and asymptotic profile for a plate equation with memory. J. Differential Equations (2020) 268: 2435-2463. ![]() |
[38] | Z. Y. Liu and S. M. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics, 398. Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[39] |
The energy-critical nonlinear wave equation with an inverse-square potential. Ann. Inst. H. Poincaré Anal. Non Linéaire (2020) 37: 417-456. ![]() |
[40] |
Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. (2006) 45: 1561-1585. ![]() |
[41] |
Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differential Equations (1997) 137: 273-301. ![]() |
[42] |
J. J. Pan and J. Zhang, On the minimal mass blow-up solutions for the nonlinear Schrödinger equation with Hardy potential, Nonlinear Anal., 197 (2020), 111829. doi: 10.1016/j.na.2020.111829
![]() |
[43] |
Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. (1975) 22: 273-303. ![]() |
[44] |
Nonlinear thermoelastic plate equations-global existence and decay rates for the Cauchy problem. J. Differential Equations (2017) 263: 8138-8177. ![]() |
[45] |
Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations. Nonlinear Anal. (2017) 152: 116-148. ![]() |
[46] |
On the Vlasov hierarchy. Math. Methods Appl. Sci. (1981) 3: 445-455. ![]() |
[47] |
Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities. Funkcial. Ekvac. (2016) 59: 1-34. ![]() |
[48] |
Semilinear Schrödinger equations with a potential of some critical inverse-square type. J. Differential Equations (2020) 268: 7629-7668. ![]() |
[49] |
Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials. SIAM J. Math. Anal. (2009) 41: 1508-1532. ![]() |
[50] |
On the Cauchy problem for reaction-diffusion equations. Trans. Amer. Math. Soc. (1993) 337: 549-590. ![]() |
[51] |
Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. (2013) 264: 2732-2763. ![]() |
[52] |
Orbital stability of standing waves for fractional Hartree equation with unbounded potentials. Nonlinear Dispersive Waves and Fluids, Contemp. Math., Amer. Math. Soc., Providence, RI (2019) 725: 265-275. ![]() |
[53] |
Scattering theory for nonlinear Schrödinger equations with inverse-square potential. J. Funct. Anal. (2014) 267: 2907-2932. ![]() |
[54] |
S. M. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133. Chapman & Hall/CRC, Boca Raton, FL, 2004. doi: 10.1201/9780203492222
![]() |
[55] |
Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping. Appl. Math. Comput. (2015) 265: 807-818. ![]() |
1. | Nguyen Huy Tuan, Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation, 2021, 14, 1937-1632, 4551, 10.3934/dcdss.2021113 | |
2. | Hongwei Zhang, Xiao Su, Initial boundary value problem for a class of wave equations of Hartree type, 2022, 149, 0022-2526, 798, 10.1111/sapm.12521 | |
3. | Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang, Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source, 2021, 14, 1937-1632, 4321, 10.3934/dcdss.2021108 | |
4. | Yue Pang, Xingchang Wang, Furong Wu, Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms, 2021, 14, 1937-1632, 4439, 10.3934/dcdss.2021115 | |
5. | Lijuan Li, Jun Zhou, Qualitative analysis of solutions to a nonlocal Choquard–Kirchhoff diffusion equations in ℝN$$ {\mathbb{R}}^N $$, 2023, 46, 0170-4214, 3255, 10.1002/mma.8689 | |
6. | Quang-Minh Tran, Hong-Danh Pham, Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge, 2021, 14, 1937-1632, 4521, 10.3934/dcdss.2021135 | |
7. | Yi Cheng, Ying Chu, A class of fourth-order hyperbolic equations with strongly damped and nonlinear logarithmic terms, 2021, 29, 2688-1594, 3867, 10.3934/era.2021066 | |
8. | Le Thi Mai Thanh, Le Thi Phuong Ngoc, Nguyen Huu Nhan, Nguyen Thanh Long, FINITE-TIME BLOW UP OF SOLUTIONS FOR A FOURTH-ORDER VISCOELASTIC WAVE EQUATION WITH DAMPING TERMS, 2023, 13, 2156-907X, 3558, 10.11948/20230162 | |
9. | Ayşe Fidan, Erhan Pişkin, Sofian Abuelbacher Adam Saad, Loay Alkhalifa, Mohamed Abdalla, Existence and blow up of solution for a Petrovsky equations of Hartree type, 2025, 0, 1937-1632, 0, 10.3934/dcdss.2025026 |