This paper investigated the blow-up properties of solutions to the initial value problem for a fourth-order nonlinear parabolic equation with an exponential source term. By using an improved concavity method, we obtained upper and lower bound estimates for the blow-up time of the solution.
Citation: Shuting Chang, Yaojun Ye. Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity[J]. Electronic Research Archive, 2024, 32(11): 6225-6234. doi: 10.3934/era.2024289
This paper investigated the blow-up properties of solutions to the initial value problem for a fourth-order nonlinear parabolic equation with an exponential source term. By using an improved concavity method, we obtained upper and lower bound estimates for the blow-up time of the solution.
[1] | C. Y. Qu, W. S. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796–809. https://doi.org/10.1016/j.jmaa.2015.11.075 doi: 10.1016/j.jmaa.2015.11.075 |
[2] | F. L. Sun, L. S. Liu, Y. H. Wu, Finite time blow-up for a thin-film equation with initial data at arbitrary energy level, J. Math. Anal. Appl., 458 (2018), 9–20. https://doi.org/10.1016/j.jmaa.2017.08.047 doi: 10.1016/j.jmaa.2017.08.047 |
[3] | J. Zhou, Blow-up for a thin-film equation with positive initial energy, J. Math. Anal. Appl., 446 (2017), 1133–1138. https://doi.org/10.1016/j.jmaa.2016.09.026 doi: 10.1016/j.jmaa.2016.09.026 |
[4] | J. Zhou, Global asymptotical behavior and some new blow-up conditions of solutions to a thin-film equation, J. Math. Anal. Appl., 464 (2018), 1290–1312. https://doi.org/10.1016/j.jmaa.2018.04.058 doi: 10.1016/j.jmaa.2018.04.058 |
[5] | Y. Cao, C. H. Liu, Global existence and non-extinction of solutions to a fourth-order parabolic equation, Appl. Math. Lett., 61 (2016), 20–25. https://doi.org/10.1016/j.aml.2016.05.002 doi: 10.1016/j.aml.2016.05.002 |
[6] | G. Y. Xu, J. Zhou, Global existence and finite time blow-up of the solution for a thin-film equation with high initial energy, J. Math. Anal. Appl., 458 (2018), 521–535. https://doi.org/10.1016/j.jmaa.2017.09.031 doi: 10.1016/j.jmaa.2017.09.031 |
[7] | Y. Z. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal. Real World Appl., 43 (2018), 451–466. https://doi.org/10.1016/j.nonrwa.2018.03.009 doi: 10.1016/j.nonrwa.2018.03.009 |
[8] | Y. Z. Han, Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity, J. Dyn. Control Syst., 27 (2021), 261–270. https://doi.org/10.1007/s10883-020-09495-1 doi: 10.1007/s10883-020-09495-1 |
[9] | Z. H. Dong, J. Zhou, Global existence and finite time blow-up for a class of thin-film equation, Z. Angew. Math. Phys., 68 (2017), 89. https://doi.org/10.1007/s00033-017-0835-3 doi: 10.1007/s00033-017-0835-3 |
[10] | S. Ibrahim, R. Jrad, M. Majdoub, T. Saanouni, Local well posedness of a 2D semilinear heat equation, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 535–551. https://doi.org/10.36045/bbms/1407765888 doi: 10.36045/bbms/1407765888 |
[11] | T. Saanouni, Global well-posedness and finite-time blow-up of some heat-type equations, Proc. Edinburgh Math. Soc., 60 (2017), 481–497. https://doi.org/10.1017/S0013091516000213 doi: 10.1017/S0013091516000213 |
[12] | T. Saanouni, Global well-posedness of some high-order focusing semilinear evolution equations with exponential nonlinearity, Adv. Nonlinear Anal., 7 (2018), 67–84. https://doi.org/10.1515/anona-2015-0108 doi: 10.1515/anona-2015-0108 |
[13] | M. Ishiwata, B. Ruf, F. Sani, E. Terraneo, Asymptotics for a parabolic equation with critical exponential nonlinearity, J. Evol. Equations, 21 (2021), 1677–1716. https://doi.org/10.1007/s00028-020-00649-z doi: 10.1007/s00028-020-00649-z |
[14] | Y. Wang, J. Qian, Blow-up time of solutions for a parabolic equation with exponential nonlinearity, Mathematics, 10 (2022), 2887. https://doi.org/10.3390/math10162887 doi: 10.3390/math10162887 |
[15] | G. A. Philippin, Blow-up phenomena for a class of fourth-order parabolic problems, Proc. Amer. Math. Soc., 143 (2015), 2507–2513. https://doi.org/10.1090/S0002-9939-2015-12446-X doi: 10.1090/S0002-9939-2015-12446-X |
[16] | L. E. Payne, D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Isr. J. Math., 22 (1975), 273–303. https://doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595 |
[17] | Y. J. Ye, Global solution and blow-up of logarithmic Klein-Gordon equation, Bull. Korean Math. Soc., 57 (2020), 281–294. https://doi.org/10.4134/BKMS.b190190 doi: 10.4134/BKMS.b190190 |
[18] | H. Ding, J. Zhou, Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl., 478 (2019), 393–420. https://doi.org/10.1016/j.jmaa.2019.05.018 doi: 10.1016/j.jmaa.2019.05.018 |
[19] | M. Marras, S. Vernier-Piro, A note on a class of 4th order hyperbolic problems with weak and strong damping and superlinear source term, Discrete Contin. Dyn. Syst. - Ser. S, 13 (2020), 2047–2055. https://doi.org/10.3934/dcdss.2020157 doi: 10.3934/dcdss.2020157 |
[20] | S. M. Boulaaras, A. Choucha, A. Zara, M. Abdalla, B. Cheri, Global existence and decay estimates of energy of solutions for a new class of $p$-Laplacian heat equations with logarithmic nonlinearity, J. Funct. Spaces, 2021. https://doi.org/10.1155/2021/5558818 doi: 10.1155/2021/5558818 |
[21] | M. Polat, On the blow-up of solutions to a fourth-order pseudoparabolic equation, Turk. J. Math., 46 (2022), 946–952. https://doi.org/10.55730/1300-0098.3134 doi: 10.55730/1300-0098.3134 |
[22] | N. Masmoudi, F. Sani, Adams' inequality with the exact growth condition in $\Bbb R^4$, Commun. Pure Appl. Math., 67 (2014), 1307–1335. https://doi.org/10.1002/cpa.21473 doi: 10.1002/cpa.21473 |
[23] | M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theory Methods Appl., 54 (2003), 1397–1415. https://doi.org/10.1016/S0362-546X(03)00192-5 doi: 10.1016/S0362-546X(03)00192-5 |