This work introduces a computational method for solving the time-fractional cable equation (TFCE). We utilize the tau method for the numerical treatment of the TFCE, using generalized Chebyshev polynomials of the third kind (GCPs3) as basis functions. The integer and fractional derivatives of the GCPs3 are the essential formulas that serve to transform the TFCE with its underlying conditions into a matrix system. This system can be solved using a suitable algorithm to obtain the desired approximate solutions. The error bound resulting from the approximation by the proposed method is given. The numerical algorithm has been validated against existing methods by presenting numerical examples.
Citation: Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Abdulrahman Khalid Al-Harbi, Mohammed H. Alharbi, Ahmed Gamal Atta. Generalized third-kind Chebyshev tau approach for treating the time fractional cable problem[J]. Electronic Research Archive, 2024, 32(11): 6200-6224. doi: 10.3934/era.2024288
This work introduces a computational method for solving the time-fractional cable equation (TFCE). We utilize the tau method for the numerical treatment of the TFCE, using generalized Chebyshev polynomials of the third kind (GCPs3) as basis functions. The integer and fractional derivatives of the GCPs3 are the essential formulas that serve to transform the TFCE with its underlying conditions into a matrix system. This system can be solved using a suitable algorithm to obtain the desired approximate solutions. The error bound resulting from the approximation by the proposed method is given. The numerical algorithm has been validated against existing methods by presenting numerical examples.
[1] | W. Gautschi, Orthogonal polynomials: applications and computation, Acta Numer., 5 (1996), 45–119. https://doi.org/10.1017/S0962492900002622 doi: 10.1017/S0962492900002622 |
[2] | F. Marcellán, Orthogonal Polynomials and Special Functions: Computation and Applications, No. 1883, Springer Science & Business Media, 2006. |
[3] | M. Abdelhakem, A. Ahmed, D. Baleanu, M. El-Kady, Monic Chebyshev pseudospectral differentiation matrices for higher-order IVPs and BVP: applications to certain types of real-life problems, Comput. Appl. Math., 41 (2022), 253. https://doi.org/10.1007/s40314-022-01940-0 doi: 10.1007/s40314-022-01940-0 |
[4] | H. M. Ahmed, Numerical solutions for singular Lane-Emden equations using shifted Chebyshev polynomials of the first kind, Contemp. Math., 4 (2023), 132–149. https://doi.org/10.37256/cm.4120232254 doi: 10.37256/cm.4120232254 |
[5] | W. M. Abd-Elhameed, H. M. Ahmed, Tau and Galerkin operational matrices of derivatives for treating singular and Emden-Fowler third-order-type equations, Int. J. Mod. Phys. C, 33 (2022), 2250061. https://doi.org/10.1142/S0129183122500619 doi: 10.1142/S0129183122500619 |
[6] | I. Terghini, A. Hasseine, D. Caccavo, H. J. Bart, Solution of the population balance equation for wet granulation using second kind Chebyshev polynomials, Chem. Eng. Res. Des., 189 (2023), 262–271. https://doi.org/10.1016/j.cherd.2022.11.028 doi: 10.1016/j.cherd.2022.11.028 |
[7] | W. M. Abd-Elhameed, M. S. Al-Harbi, A. K. Amin, H. M. Ahmed, Spectral treatment of high-order Emden-Fowler equations based on modified Chebyshev polynomials, Axioms, 12 (2023), 99. https://doi.org/10.3390/axioms12020099 doi: 10.3390/axioms12020099 |
[8] | R. M. Hafez, Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method, Comput. Appl. Math., 37 (2018), 5253–5273. https://doi.org/10.1007/s40314-018-0635-1 doi: 10.1007/s40314-018-0635-1 |
[9] | A. H. Bhrawy, E. H. Doha, D. Baleanu, R. M. Hafez, A highly accurate Jacobi collocation algorithm for systems of high-order linear differential–difference equations with mixed initial conditions, Math. Methods Appl. Sci., 38 (2015), 3022–3032. https://doi.org/10.1002/mma.3277 doi: 10.1002/mma.3277 |
[10] | M. A. Abdelkawy, A. M. Lopes, M. M. Babatin, Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order, Chaos, Solitons Fractals, 134 (2020), 109721. https://doi.org/10.1016/j.chaos.2020.109721 doi: 10.1016/j.chaos.2020.109721 |
[11] | W. M. Abd-Elhameed, A. M. Alkenedri, Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials generalizing third- and fourth-kinds of Chebyshev polynomials, CMES-Comp. Model. Eng. Sci., 126 (2021), 955–989. https://doi.org/10.32604/cmes.2021.013603 doi: 10.32604/cmes.2021.013603 |
[12] | R. Magin, Fractional calculus in bioengineering, part 1, Crit. Rev. Biomed. Eng., 32 (2004), 104. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 doi: 10.1615/CritRevBiomedEng.v32.i1.10 |
[13] | V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science & Business Media, 2010. |
[14] | P. Roul, V. Goura, R. Cavoretto, A numerical technique based on B-spline for a class of time-fractional diffusion equation, Numer. Methods Partial Differ. Equations, 39 (2023), 45–64. https://doi.org/10.1002/num.22790 doi: 10.1002/num.22790 |
[15] | D. Albogami, D. Maturi, H. Alshehri, Adomian decomposition method for solving fractional time-Klein-Gordon equations using Maple, Appl. Math., 14 (2023), 411–418. https://doi.org/10.4236/am.2023.146024 doi: 10.4236/am.2023.146024 |
[16] | K. Sadri, K. Hosseini, E. Hinçal, D. Baleanu, S. Salahshour, A pseudo-operational collocation method for variable-order time-space fractional KdV–Burgers–Kuramoto equation, Math. Methods Appl. Sci., 46 (2023), 8759–8778. https://doi.org/10.1002/mma.9015 doi: 10.1002/mma.9015 |
[17] | N. Kamran, S. Ahmad, K. Shah, T. Abdeljawad, B. Abdalla, On the approximation of fractal-fractional differential equations using numerical inverse Laplace transform methods, CMES-Comp. Model. Eng. Sci., 135 (2023), 2743–2765. https://doi.org/10.32604/cmes.2023.023705 doi: 10.32604/cmes.2023.023705 |
[18] | S. M. Sivalingam, P. Kumar, V. Govindaraj, A neural networks-based numerical method for the generalized Caputo-type fractional differential equations, Math. Comput. Simul., 213 (2023), 302–323. https://doi.org/10.1016/j.matcom.2023.06.012 doi: 10.1016/j.matcom.2023.06.012 |
[19] | S. M. Sivalingam, P. Kumar, V. Govindaraj, A novel numerical scheme for fractional differential equations using extreme learning machine, Physica A, 622 (2023), 128887. https://doi.org/10.1016/j.physa.2023.128887 doi: 10.1016/j.physa.2023.128887 |
[20] | H. M. Ahmed, Enhanced shifted Jacobi operational matrices of derivatives: spectral algorithm for solving multiterm variable-order fractional differential equations, Boundary Value Probl., 2023 (2023), 108. https://doi.org/10.1186/s13661-023-01796-1 doi: 10.1186/s13661-023-01796-1 |
[21] | H. M. Srivastava, W. Adel, M. Izadi, A. A. El-Sayed, Solving some physics problems involving fractional-order differential equations with the Morgan-Voyce polynomials, Fractal Fract., 7 (2023), 301. https://doi.org/10.3390/fractalfract7040301 doi: 10.3390/fractalfract7040301 |
[22] | M. Izadi, Ş. Yüzbaşı, W. Adel, A new Chelyshkov matrix method to solve linear and nonlinear fractional delay differential equations with error analysis, Math. Sci., 17 (2023), 267–284. https://doi.org/10.1007/s40096-022-00468-y doi: 10.1007/s40096-022-00468-y |
[23] | H. Alrabaiah, I. Ahmad, R. Amin, K. Shah, A numerical method for fractional variable order pantograph differential equations based on Haar wavelet, Eng. Comput., 38 (2022), 2655–2668. https://doi.org/10.1007/s00366-020-01227-0 doi: 10.1007/s00366-020-01227-0 |
[24] | Y. Chen, X. Ke, Y. Wei, Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis, Appl. Math. Comput., 251 (2015), 475–488. https://doi.org/10.1016/j.amc.2014.11.079 doi: 10.1016/j.amc.2014.11.079 |
[25] | N. Qian, T. J. Sejnowski, An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons, Biol. Cybern., 62 (1989), 1–15. https://doi.org/10.1007/BF00217656 doi: 10.1007/BF00217656 |
[26] | M. J. Saxton, Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study, Biophys. J., 81 (2001), 2226–2240. https://doi.org/10.1016/S0006-3495(01)75870-5 doi: 10.1016/S0006-3495(01)75870-5 |
[27] | T. A. M. Langlands, B. Henry, S. Wearne, Solution of a fractional cable equation: finite case, Appl. Math. Rep. AMR05/35, Univ. New South Wales, 2005. |
[28] | O. Nikan, A. Golbabai, J. A. T. Machado, T. Nikazad, Numerical approximation of the time fractional cable model arising in neuronal dynamics, Eng. Comput., 38 (2022), 155–173. https://doi.org/10.1007/s00366-020-01033-8 doi: 10.1007/s00366-020-01033-8 |
[29] | A. G. Atta, Two spectral Gegenbauer methods for solving linear and nonlinear time fractional cable problems, preprint, 2023. https://doi.org/10.21203/rs.3.rs-2972455/v1 |
[30] | S. Kumar, D. Baleanu, Numerical solution of two-dimensional time fractional cable equation with Mittag-Leffler kernel, Math. Methods Appl. Sci., 43 (2020), 8348–8362. https://doi.org/10.1002/mma.6491 doi: 10.1002/mma.6491 |
[31] | X. Gao, F. Liu, H. Li, Y. Liu, I. Turner, B. Yin, A novel finite element method for the distributed-order time fractional cable equation in two dimensions, Comput. Math. Appl., 80 (2020), 923–939. https://doi.org/10.1016/j.camwa.2020.04.019 doi: 10.1016/j.camwa.2020.04.019 |
[32] | A. Rezazadeh, Z. Avazzadeh, Barycentric–Legendre interpolation method for solving two-dimensional fractional cable equation in neuronal dynamics, Int. J. Appl. Comput. Math., 8 (2022), 80. https://doi.org/10.1007/s40819-022-01273-w doi: 10.1007/s40819-022-01273-w |
[33] | C. V. D. Kumar, D. G. Prakasha, P. Veeresha, M. Kapoor, A homotopy-based computational scheme for two-dimensional fractional cable equation, Mod. Phys. Lett. B, 38 (2024), 2450292. https://doi.org/10.1142/S0217984924502920 doi: 10.1142/S0217984924502920 |
[34] | N. H. Sweilam, S. M. Ahmed, S. M. AL-Mekhlafi, Two-dimensional distributed order cable equation with non-singular kernel: a nonstandard implicit compact finite difference approach, J. Appl. Math. Comput. Mech., 23 (2024), 93–104. https://doi.org/10.17512/jamcm.2024.2.08 doi: 10.17512/jamcm.2024.2.08 |
[35] | F. M. Salama, On numerical simulations of variable-order fractional Cable equation arising in neuronal dynamics, Fractal Fract., 8 (2024), 282. https://doi.org/10.3390/fractalfract8050282 doi: 10.3390/fractalfract8050282 |
[36] | W. M. Abd-Elhameed, A. M. Al-Sady, O. M. Alqubori, A. G. Atta, Numerical treatment of the fractional Rayleigh-Stokes problem using some orthogonal combinations of Chebyshev polynomials, AIMS Math., 9 (2024), 25457–25481. https://doi.org/10.3934/math.20241243 doi: 10.3934/math.20241243 |
[37] | E. H. Doha, W. M. Abd-Elhameed, A. H. Bhrawy, New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials, Collect. Math., 64 (2013), 373–394. https://doi.org/10.1007/s13348-012-0067-y doi: 10.1007/s13348-012-0067-y |
[38] | R. M. Hafez, M. A. Zaky, M. A. Abdelkawy, Jacobi spectral Galerkin method for distributed-order fractional Rayleigh–Stokes problem for a generalized second grade fluid, Front. Phys., 7 (2019), 240. https://doi.org/10.3389/fphy.2019.00240 doi: 10.3389/fphy.2019.00240 |
[39] | A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Advanced shifted sixth-kind Chebyshev tau approach for solving linear one-dimensional hyperbolic telegraph type problem, Math. Sci., 17 (2023), 415–429. https://doi.org/10.1007/s40096-022-00460-6 doi: 10.1007/s40096-022-00460-6 |
[40] | A. A. El-Sayed, S. Boulaaras, N. H. Sweilam, Numerical solution of the fractional-order logistic equation via the first-kind Dickson polynomials and spectral tau method, Math. Methods Appl. Sci., 46 (2023), 8004–8017. https://doi.org/10.1002/mma.7345 doi: 10.1002/mma.7345 |
[41] | H. F. Ahmed, W. A. Hashem, Improved Gegenbauer spectral tau algorithms for distributed-order time-fractional telegraph models in multi-dimensions, Numerical Algorithms, 93 (2023), 1013–1043. https://doi.org/10.1007/s11075-022-01452-2 doi: 10.1007/s11075-022-01452-2 |
[42] | W. M. Abd-Elhameed, Y. H. Youssri, A. K. Amin, A. G. Atta, Eighth-kind Chebyshev polynomials collocation algorithm for the nonlinear time-fractional generalized Kawahara equation, Fractal Fract., 7 (2023), 652. https://doi.org/10.3390/fractalfract7090652 doi: 10.3390/fractalfract7090652 |
[43] | W. M. Abd-Elhameed, H. M. Ahmed, Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials, AIMS Math., 9 (2024), 2137–2166. https://doi.org/10.3934/math.2024107 doi: 10.3934/math.2024107 |
[44] | M. M. Khader, M. Adel, Numerical approach for solving the Riccati and logistic equations via QLM-rational Legendre collocation method, Comput. Appl. Math., 39 (2020), 166. https://doi.org/10.1007/s40314-020-01207-6 doi: 10.1007/s40314-020-01207-6 |
[45] | M. H. Alharbi, A. F. Abu Sunayh, A. G. Atta, W. M. Abd-Elhameed, Novel approach by shifted Fibonacci polynomials for solving the fractional Burgers equation, Fractal Fract., 8 (2024), 427. https://doi.org/10.3390/fractalfract8070427 doi: 10.3390/fractalfract8070427 |
[46] | W. Weera, R. S. V. Kumar, G. Sowmya, U. Khan, B. C. Prasannakumara, E. E. Mahmoud, et al., Convective-radiative thermal investigation of a porous dovetail fin using spectral collocation method, Ain Shams Eng. J., 14 (2023), 101811. https://doi.org/10.1016/j.asej.2022.101811 doi: 10.1016/j.asej.2022.101811 |
[47] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998. |
[48] | Y. Yang, Y. Huang, Y. Zhou, Numerical simulation of time fractional cable equations and convergence analysis, Numer. Methods Partial Differ. Equations, 34 (2018), 1556–1576. https://doi.org/10.1002/num.22225 doi: 10.1002/num.22225 |
[49] | M. Mazza, S. Serra-Capizzano, R. L. Sormani, Algebra preconditionings for 2D Riesz distributed-order space-fractional diffusion equations on convex domains, Numer. Linear Algebra Appl., 31 (2024), e2536. https://doi.org/10.1002/nla.2536 doi: 10.1002/nla.2536 |
[50] | M. Mazza, S. Serra-Capizzano, M. Usman, Symbol-based preconditioning for Riesz distributed-order space-fractional diffusion equations, Electron. Trans. Numer. Anal., 54 (2021), 499–513. Available from: https://etna.ricam.oeaw.ac.at/vol.54.2021/pp499-513.dir/pp499-513.pdf. |
[51] | L. Aceto, M. Mazza, A rational preconditioner for multi-dimensional Riesz fractional diffusion equations, Comput. Math. Appl., 143 (2023), 372–382. https://doi.org/10.1016/j.camwa.2023.05.016 doi: 10.1016/j.camwa.2023.05.016 |
[52] | C. Börgers, Introduction to Numerical Linear Algebra, Society for Industrial and Applied Mathematics, 2022. |
[53] | A. H. Bhrawy, M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876–895. https://doi.org/10.1016/j.jcp.2014.10.060 doi: 10.1016/j.jcp.2014.10.060 |
[54] | Y. H. Youssri, A. G. Atta, Spectral collocation approach via normalized shifted Jacobi polynomials for the nonlinear Lane-Emden equation with fractal-fractional derivative, Fractal Fract., 7 (2023), 133. https://doi.org/10.3390/fractalfract7020133 doi: 10.3390/fractalfract7020133 |
[55] | X. Zhao, L. Wang, Z. Xie, Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions, SIAM J. Numer. Anal., 51 (2013), 1443–1469. https://doi.org/10.1137/12089421X doi: 10.1137/12089421X |
[56] | X. Yang, X. Jiang, H. Zhang, A time–space spectral tau method for the time fractional cable equation and its inverse problem, Appl. Numer. Math., 130 (2018), 95–111. https://doi.org/10.1016/j.apnum.2018.03.016 doi: 10.1016/j.apnum.2018.03.016 |
[57] | N. Moshtaghi, A. Saadatmandi, Numerical solution of time fractional cable equation via the sinc-Bernoulli collocation method, J. Appl. Comput. Mech., 7 (2021), 1916–1924. https://doi.org/10.22055/jacm.2020.31923.1940 doi: 10.22055/jacm.2020.31923.1940 |