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Abstract: This work introduces a computational method for solving the time-fractional cable equation
(TFCE). We utilize the tau method for the numerical treatment of the TFCE, using generalized Cheby-
shev polynomials of the third kind (GCPs3) as basis functions. The integer and fractional derivatives
of the GCPs3 are the essential formulas that serve to transform the TFCE with its underlying condi-
tions into a matrix system. This system can be solved using a suitable algorithm to obtain the desired
approximate solutions. The error bound resulting from the approximation by the proposed method is
given. The numerical algorithm has been validated against existing methods by presenting numerical
examples.
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1. Introduction

Orthogonal polynomials have significant roles in various mathematical and applied sciences. This
is due to the polynomials’ unique properties and characteristics. For example, these polynomials are
very useful in approximation theory, numerical integration, and the solution of differential equations;
see, for example, [1,2]. The Jacobi polynomials (JPs) are fundamental classical orthogonal polynomi-
als used extensively in numerical analysis and approximation theory. These polynomials contain six
essential classes. Four classes are the celebrated four kinds of Chebyshev polynomials (CPs). The first
and second kinds of CPs were widely employed in many applications. The authors of [3, 4] employed
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CPs of the first kind to handle some BVPs that arise in some applications. The authors in [5] nu-
merically solved some singular Emden-Fowler equations using some combinations of the second-kind
CPs. The authors of [6] utilized the CPs of the second kind to solve the population balance equation.
Higher-order Emden-Fowler equations were solved via the CPs of the third-kind in [7]. There are many
contributions regarding general JPs; see, for example, [8–10]. These polynomials involve two param-
eters. The derivative formulas of these polynomials involve a terminating hypergeometric function of
the type 3F2(1). Generally, we cannot sum this hypergeometric function in a closed form, but we can
do so for some specific choices of the two parameters of the JPs. The authors of [11] obtained reduced
derivative expressions of certain Jacobi polynomials that generalize CPs of the third kind. This paper
will utilize these polynomials to obtain new solutions for the fractional cable problem.

Fractional differential equations (FDEs) are powerful tools in many branches of the practical sci-
ences. They shed light on many phenomena that standard DEs fail to address. The capacity to model
genetic and memory processes is crucial. These equations can describe models related to biological
and physiological processes, such as tumor growth and neuron action. Some applications for FDEs
can be found in [12, 13]. In most cases, the analytical solutions for the FDEs are unavailable, so it is
vital to employ numerical analysis. Many approaches exist in the literature to handle different DEs.
For example, in [14], the splines method was utilized for certain time-fractional diffusion equations.
The Adomian decomposition method was applied in [15]. A collocation algorithm was applied in [16]
for a type of KdV equation. In [17], the inverse Laplace transform methods were utilized to treat some
FDEs. A neural network numerical method was applied in [18] for generalized Caputo FDEs. Based
on an extreme learning machine, the authors in [19] followed another approach for FDEs. Matrix meth-
ods were used in [20–22] to treat some FDEs. A Haar wavelets method was applied in [23] for certain
pantograph FDEs. Another wavelet approach was used in [24] to treat a system of nonlinear FDEs.

The cable equation is one of the most fundamental equations for modeling neural dynamics. Under
simplifying assumptions, the Nernst-Planck electro-diffusion equation for ion transport in neurons has
also been shown to be identical to the cable equation [25]. It has been explained that if ions are
experiencing anomalous subdiffusion, then it is best to employ models that account for anomalous
diffusion rather than those that assume normal diffusion since the latter is likely to provide deceptive
diffusion coefficient values [26]. A fractional form of the Nernst-Planck equation was constructed by
Langlands et al. [27] to represent the anomalous subdiffusion of the ion. Due to the importance of
the different types of these equations, many authors were interested in dealing with them numerically.
The authors of [28] proposed a numerical approximation to TFCE. Atta in [29] proposed two spectral
methods for treating linear and non-linear TFCE. The authors of [30] proposed some approximate
solutions for the two-dimensional TFCE. Another approach based on the finite element method was
presented in [31] to deal with the distributed-order TFCE in two dimensions. A specific interpolation
method was used in [32] for solving two-dimensional FCDE. Another method was used in [33] for the
two-dimensional fractional cable equations. In [34], a finite difference scheme was utilized to solve
specific distributed-order cable equations. The author in [35] numerically treated the variable-order
fractional cable equation.

Spectral methods have grown to the point where they are indispensable for improving numerical
solutions of differential equations (DEs) in all fields. Compared with more conventional numerical
approaches, these methods stand out due to their many advantages. The pinpoint accuracy of their
solutions is one of their most vital points. It is also crucial to note that solutions are expressed as
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combinations of specific special functions or polynomials. There are three main methods of classifying
spectral techniques. The Galerkin method has some conditions in choosing the trial and test functions;
see, for example, [11, 36–38]. One benefit of the tau technique over the Galerkin method is its greater
flexibility when choosing the basis functions; see, for instance, [39–41]. Any differential equation can
be treated numerically using the collocation approach, so many contributions exist in this area; see, for
example, [42–46].

This article proposes a tau approach to solving the TFCE using the GCPs3 as basis functions. The
key formulas to design the desired method are the expressions of the polynomials’ integer and frac-
tional derivatives. We will explicitly transform the TFCE with its underlying conditions into a matrix
system, yielding an algebraic system of equations that we can numerically treat. We can summarize
our goals as follows:

• Developing some inner product formulas involving the derivatives of the GCPs3.
• Obtaining the fractional derivatives of the GCPs3.
• Applying the tau method to the TFCE to convert the problem into a matrix system that can be

handled.
• Obtaining an error bound for the proposed numerical method.
• Testing the algorithm numerically by displaying examples supported by comparisons with other

techniques.

The paper is organized as follows. Section 2 displays some fundamentals and necessary formulas.
Section 3 focuses on implementing the tau algorithm designed for the TFCE’s numerical treatment.
Section 4 studies the error bound of the method used. Section 5 gives some illustrative examples ac-
companied by comparisons with other methods. We end the article with some conclusions in Section 6.

2. Fundamental and some used definitions and formulas

This section presents some useful fundamentals in the sequel. The Caputo fractional derivative
is given. We provide a brief account of JPs. Some characteristics of the GCPs3 are also taken into
account.

2.1. The Caputo sense of fractional derivative

Definition 1. [47] In the sense of Caputo, the fractional-order derivative is given by

DνzY(z) =
1

Γ(r − ν)

∫ z

0
(z − t)r−ν−1Y (r)(t) dt, ν > 0, z > 0, (2.1)

r − 1 < ν ≤ r, r ∈ N.

The following identities hold:

DνzC = 0, (C is a constant), (2.2)

Dνz zk =

0, if k ∈ N0 and k < ⌈ν⌉,
k!

Γ(k+1−ν) zk−ν, if k ∈ N0 and k ≥ ⌈ν⌉,
(2.3)

where N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}, and ⌈ν⌉ is the ceiling function.
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2.2. An account on the shifted normalized JPs

The shifted normalized JPs on [0, 1] are a sequence of polynomials
{
ϕ(ν,θ)

k (ζ)
}

k≥0
that can be de-

fined as
ϕ(ν,θ)

k (ζ) =
k!Γ(ν + 1)
Γ(k + ν + 1)

P(ν,θ)
k (2 ζ − 1), (2.4)

where P(ν,θ)
k (2 ζ − 1) are the classical shifted JPs on [0, 1].{

ϕ(ν,θ)
k (ζ)

}
k≥0

is an orthogonal set on [0, 1] in the sense that∫ 1

0
ϕ(ν,θ)

m (ζ) ϕ(ν,θ)
k (ζ) (1 − ζ)ν ζθ dζ = hk δk,m, (2.5)

where

hk =
k!Γ(ν + 1)2 Γ(k + θ + 1)

(2k + λ)Γ(k + ν + 1)Γ(k + λ)
,

λ = ν + θ + 1,

and δn,m is the well-known Kronecker delta.
ϕ(ν,θ)

k (ζ) can be expressed as

ϕ(ν,θ)
j (ζ) =

j∑
r=0

Br, j ζ
r, (2.6)

where

Br, j =
(−1) j+r j!Γ(1 + ν) (1 + θ) j(1 + ν + θ) j+r

( j − r)! r!Γ(1 + j + ν) (1 + θ)r (1 + ν + θ) j
. (2.7)

Moreover, the inversion formula of ϕ(ν,θ)
k (ζ) is

ζr =

r∑
m=0

(
r

r−m

)
(1 + ν)m(1 + m + θ)r−m

(1 + m + ν + θ)m(2 + 2m + ν + θ)r−m
ϕ(ν,θ)

m (ζ). (2.8)

2.3. The shifted GCPs3

The shifted GCPs3 that were studied in [11] are specifically those of the normalized shifted JPs
ϕ(ν,θ)

k (ζ) with θ = ν + 1. Many formulas concerned with these polynomials were given in [11]. Here,
we provide some formulas that will be used in this paper.

The orthogonality relation of ϕ(ν,ν+1)
k (ζ) is given by∫ 1

0
ϕ(ν,ν+1)

m (ζ) ϕ(ν,ν+1)
k (ζ) w(ζ) dζ = h̄k δk,m, (2.9)

where w(ζ) = (1 − ζ)ν ζν+1, and

h̄k =
k! (Γ(1 + ν))2

2Γ(2 + k + 2ν)
.

ϕ(ν,ν+1)
k (ζ) may be expressed as

ϕ(ν,ν+1)
j (ζ) =

j∑
r=0

B̄r, j ζ
r, (2.10)

Electronic Research Archive Volume 32, Issue 11, 6200–6224.



6204

where

B̄r, j =
(−1) j+r (1 + j + ν)

(
j
r

)
Γ(1 + ν)Γ(2 + j + r + 2ν)

Γ(2 + r + ν)Γ(2 + j + 2ν)
. (2.11)

In addition, ζr can be represented as

ζr =

r∑
m=0

2
(

r
r−m

)
Γ(2 + r + ν)Γ(2 + m + 2ν)

Γ(1 + ν)Γ(3 + m + r + 2ν)
ϕ(ν,ν+1)

m (ζ). (2.12)

In the following, an expression for the derivatives of the shifted GCPs3 is given.

Theorem 1. [11] For s, q ∈ Z+, with s ≥ q, we have

Dqϕ(ν,ν+1)
s (ζ) =

s−q∑
i=0

Gi,s,q ϕ
(ν,ν+1)
i (ζ), (2.13)

where Gi,s,q are given by

Gi,s,q =
22q s!Γ(i + 2 ν + 2)

i! (q − 1)! Γ(s + 2ν + 2)



(
s−i+q−2

2

)
! Γ

(
s+i+q+2 ν+3

2

)(
s−i−q

2

)
! Γ

(
s+i−q+2 ν+3

2

) , (s + i + q) even,(
s−i+q−1

2

)
! Γ

(
s+i+q+2 ν+2

2

)(
s−i−q−1

2

)
! Γ

(
s+i−q+2 ν+4

2

) , (s + i + q) odd.

(2.14)

3. Tau approach for the TFCE

This section analyzes an approach based on applying the Tau method to solve the TFCE. The in-
teger and fractional derivatives of the basis functions of the GCPs3 will be used. Now, consider the
TFCE [48]

ξt(ζ, t) = D1−ρ1
t K ξζζ(ζ, t) − ν̂D1−ρ2

t ξ(ζ, t) + f (ζ, t), 0 < ρ1 < ρ2 < 1, (3.1)

governed by the conditions

ξ(ζ, 0) =g(ζ), 0 < ζ < 1, (3.2)
ξ(0, t) =h1(t), ξ(1, t) = h2(t), 0 < t < 1, (3.3)

where K > 0 and ν̂ are constants, g(ζ), h1(t), h2(t) are known continuous functions, and the source
term is f (ζ, t).

Now, one may set
PL(Ω) = span{ϕ(ν,ν+1)

i (ζ) ϕ(ν,ν+1)
j (t) : 0 ≤ i, j ≤ L}, (3.4)

where Ω = (0, 1) × (0, 1).
Consequently, any function ξL(ζ, t) ∈ PL(Ω) can be written in the form

ξL(ζ, t) =
L∑

i=0

L∑
j=0

ci j ϕ
(ν,ν+1)
i (ζ) ϕ(ν,ν+1)

j (t) = ψ(ζ) C (ψ(t))T , (3.5)
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where ψ(ζ) = [ϕ(ν,ν+1)
0 (ζ), ϕ(ν,ν+1)

1 (ζ), . . . , ϕ(ν,ν+1)
L

(ζ)], (ψ(t))T = [ϕ(ν,ν+1)
0 (t), ϕ(ν,ν+1)

1 (t), . . . , ϕ(ν,ν+1)
L

(t)]T ,

and C = (ci j)0≤i, j≤L is a matrix of unknowns with order (L + 1)2.
The residual Res(ζ, t) of Eq (3.1) has the following form:

Res(ζ, t) = ξLt (ζ, t) − D1−ρ1
t K ξLxx(ζ, t) + ν̂D1−ρ2

t ξL(ζ, t) − f (ζ, t). (3.6)

The Tau technique, when used, leads to

(Res(ζ, t) , ϕ(ν,ν+1)
r (ζ) ϕ(ν,ν+1)

s (t))ŵ(ζ,t) = 0, 0 ≤ r ≤ L − 2, 0 ≤ s ≤ L − 1, (3.7)

with ŵ(ζ, t) = w(ζ) w(t).
Assume that

F = ( fr,s)(L−1)×L, frs = ( f̂ (ζ, t) ϕ(ν,ν+1)
r (ζ) ϕ(ν,ν+1)

s (t))ŵ(ζ,t), (3.8)

A = (ai,r)(L+1)×(L−1), ai,r = (ϕ(ν,ν+1)
i (ζ) ϕ(ν,ν+1)

r (ζ))w(ζ), (3.9)

B = (b j,s)(L+1)×L, b j,s =

d ϕ(ν,ν+1)
j (t)

d t
ϕ(ν,ν+1)

s (t)


w(t)

, (3.10)

H = (hir)(L+1)×(L−1), hir =

d2 ϕ(ν,ν+1)
i (ζ)
d ζ2 ϕ(ν,ν+1)

r (ζ)


w(ζ)

, (3.11)

K = (k j,s)(L+1)×L, k j,s = (D1−ρ1
t ϕ(ν,ν+1)

j (t) ϕ(ν,ν+1)
s (t))w(t), (3.12)

Q = (q j,s)(L+1)×L, q j,s = (D1−ρ2
t ϕ(ν,ν+1)

j (t) ϕ(ν,ν+1)
s (t))w(t). (3.13)

Therefore, Eq (3.7) can be rewritten as

L∑
i=0

L∑
j=0

ci j ai,r b j,s − K
L∑

i=0

L∑
j=0

ci j hi,r k j,s + ν̂

L∑
i=0

L∑
j=0

ci j ai,r q j,s = fr,s, 0 ≤ r ≤ L − 2, 0 ≤ s ≤ L − 1,

(3.14)
or in the following matrix form:

A
T CB − KHT CK + ν̂AT CQ = F. (3.15)

The governing conditions in (3.2) and (3.3) give

L∑
i=0

L∑
j=0

ci j ai,r ϕ
(ν,ν+1)
j (0) = (g(ζ) , ϕ(ν,ν+1)

r (ζ))w(ζ), 0 ≤ r ≤ L,

L∑
i=0

L∑
j=0

ci j a j,s ϕ
(ν,ν+1)
i (0) = (h1(t) , ϕ(ν,ν+1)

s (t))w(t), 0 ≤ s ≤ L − 1,

L∑
i=0

L∑
j=0

ci j a j,s ϕ
(ν,ν+1)
i (1) = (h2(t) , ϕ(ν,ν+1)

s (t))w(t), 0 ≤ s ≤ L − 1.

(3.16)

Now, a suitable approach may be used to solve the system of algebraic equations of order (L + 1)2,
which includes Eqs (3.15) and (3.16).

In the following theorem, we will give explicitly the entries of the matricesA, B, H , K , and Q.
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Theorem 2. The elements ai,r, b j,s, hi,r, k j,s, and q j,s are given by

(a)
∫ 1

0
w(ζ) ϕ(ν,ν+1)

i (ζ) ϕ(ν,ν+1)
r (ζ) dζ = ai,r,

(b)
∫ 1

0
w(ζ)

d2 ϕ(ν,ν+1)
i (ζ)
d ζ2 ϕ(ν,ν+1)

r (ζ) dζ = hi,r,

(c)
∫ 1

0
w(t)

d ϕ(ν,ν+1)
j (t)

d t
ϕ(ν,ν+1)

s (t) dt = b j,s,

(d)
∫ 1

0
w(t) D1−ρ1

t ϕ(ν,ν+1)
j (t) ϕ(ν,ν+1)

s (t) dt = k j,s,

(e)
∫ 1

0
w(t) D1−ρ2

t ϕ(ν,ν+1)
j (t) ϕ(ν,ν+1)

s (t) dt = q j,s,

(3.17)

where

ai,r = h̄i δi,r, (3.18)

hi,r =
i!Γ(1 + ν)2

Γ(2 + i + 2ν)


(
−1 + (i − r)2

)
(2 + i + r + 2ν) , if i ≥ r + 2 and (i + r) odd,

(i − r) (1 + i + r + 2ν) (3 + i + r + 2ν) , if i ≥ r + 2 and (i + r) even,

0, otherwise,

(3.19)

b j,s =
j!Γ(1 + ν)2

Γ(2 + j + 2ν)


j − s, if j ≥ s + 1 and ( j + s) is odd,

2 + j + s + 2 ν, if j ≥ s + 1 and ( j + s) is even,

0, otherwise,

(3.20)

k j,s =

j∑
r=1

s∑
k=0

r!Γ(ν + 1) B̄r, j B̄k,s Γ(k + r + ν + ρ1 + 1)
Γ(ρ1 + r)Γ(k + r + 2 ν + ρ1 + 2)

, (3.21)

q j,s =

j∑
r=1

s∑
k=0

r!Γ(ν + 1) B̄r, j B̄k,s Γ(k + r + ν + ρ2 + 1)
Γ(ρ2 + r)Γ(k + r + 2 ν + ρ2 + 2)

, (3.22)

and B̄r, j is given in (2.11).

Proof. The first part of Theorem 2 is clear from the orthogonality relation (2.9). To show the second
and third parts of Theorem 2, we will give a closed form for the integral∫ 1

0
w(ζ)

dq ϕ(ν,ν+1)
i (ζ)
d ζq ϕ(ν,ν+1)

r (ζ) dζ = Vr,i,q.

Based on Eq (2.13), we can write

Vr,i,q =

i−q∑
ℓ=0

Gℓ,i,q

∫ 1

0
w(ζ)ϕ(ν,ν+1)

ℓ (ζ) ϕ(ν,ν+1)
r (ζ) dζ, (3.23)

and Gℓ,i,q are as given in (2.14).
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After applying the the orthogonality relation (2.9), relation (3.23) reduces to the following form:

Vr,i,q =

i−q∑
ℓ=0

Gℓ,i,q h̄ℓ δℓ,r, (3.24)

and thus

Vr,i,q =

Gr,i,q h̄r, if i ≥ q + r,

0 otherwise,
(3.25)

and accordingly, we have

Vr,i,q =
22q−1 i!Γ(1 + ν)2

(q − 1)!Γ(2 + i + 2ν)

×



(
1
2 (−1 + i + q − r)

)
! Γ

(
1
2 (2 + i + q + r) + ν

)(
1
2 (−1 + i − q − r)

)
! Γ

(
1
2 (4 + i − q + r) + ν

) if i ≥ q + r and (i + r + q) odd,(
1
2 (i + q − r) − 1

)
! Γ

(
1
2 (3 + i + q + r) + ν

)(
1
2 (i − q − r)

)
! Γ

(
1
2 (3 + i − q + r) + ν

) if i ≥ q + r and (i + r + q) even,

0 otherwise.

(3.26)

Now, if we set q = 2 in (3.26), then the elements of hi,r can be obtained as in (3.19). Furthermore,
setting q = 1 in (3.26) yields b j,s as in (3.20).

To find k j,s, we use Eq (2.10) to get

k j,s =

∫ 1

0
w(t) D1−ρ1

t ϕ(ν,ν+1)
j (t) ϕ(ν,ν+1)

s (t) dt

=

j∑
r=1

s∑
k=0

B̄r, j B̄k,s r!
Γ(r − ρ1 + 1)

∫ 1

0
w(t) tr−ρ1+k dt,

(3.27)

which leads to the following result:

k j,s =

j∑
r=1

s∑
k=0

r!Γ(ν + 1) B̄r, j B̄k,s Γ(k + r + ν + ρ1 + 1)
Γ(ρ1 + r)Γ(k + r + 2 ν + ρ1 + 2)

. (3.28)

Following similar procedures to those given to obtain elements of the matrix K , the entries of the
matrix Q can be obtained.

3.1. Comments on computational complexity of the resulting system

This part is confined to describing the structure of the matrices A, B, H , and K that appear in
system (3.15). In addition, we comment on the resulting system and its numerical solution.

Here, we give the structure of the matrices A, B, H ,K , and Q taking the following forms for
ρ1 = 0.2, ρ2 = 0.8, ν = 2, and L = 5. The other choices for ρ1, ρ2, and ν lead to the same structure of
these matrices.
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A =



1
60 0 0 0
0 1

360 0 0
0 0 1

1260 0
0 0 0 1

3360
0 0 0 0
0 0 0 0


, (3.29)

B =



0 0 0 0 0
7

180 0 0 0 0
1

315
1

70 0 0 0
3

560
1

840
11

1680 0 0
1

945
11

3780
1

1890
13

3780 0
11

7560
1

1890
13

7560
1

3780
1

504


, (3.30)

H =



0 0 0 0
0 0 0 0
1
5 0 0 0
3
70

33
280 0 0

11
105

22
945

143
1890 0

11
315

143
1890

13
945

13
252


, (3.31)

K =



0 0 0 0 0
0.037535 0.001042 −0.0001017 0.000019 −5.463313 × 10−6

−0.013405 0.01075 0.000589 −0.000080 0.000019
0.018048 −0.002401 0.004346 0.000332 −0.000055
−0.016539 0.004144 −0.000748 0.002094 0.000198
0.019136 −0.002740 0.001669 −0.0002997 0.001131


, (3.32)

Q =



0 0 0 0 0
0.026466 0.002714 −0.000061 7.554362 × 10−6 −1.538851 × 10−6

−0.029084 0.001762 0.000953 −0.000035 5.860034 × 10−6

0.034091 −0.001307 0.000449 0.00040020 −0.0000200
−0.039083 0.0014444 −0.000267 0.0001632 0.0001923
0.044314 −0.001503 0.0003022 −0.0000817 0.00007176


. (3.33)

Remark 1. It is clear that the matricesA, B, and H have special structures, however, the matrices
K and Q are full matrices. This is because these matrices resulted from the fractional derivatives
in (3.1).

Remark 2. It should be stressed that the numerical treatment is not effective alone when the resulting
linear systems of algebraic equations are large, dense, and ill-conditioned, making the system poten-
tially large and computationally intensive. In such case, we have to use suitable numerical solvers to
treat these systems; one can refer to [49–52].
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4. Error bound

This section examines the error analysis of the numerical solution ξL(ζ, t) when compared to the
exact solution ξ(ζ, t) of Eq (3.1), divided into the following two cases:

1) Error analysis in the L∞ norm.
2) Error analysis in the L2 norm.

4.1. Error analysis in L∞- norm

Assume PL(Ω) as defined in (3.4). Then, for each ξ̂L(ζ, t) ∈ PL(Ω) there exists a unique best
approximation ξL(ζ, t) ∈ PL(Ω), which is given by

||ξ(ζ, t) − ξL(ζ, t)||∞ ≤ ||ξ(ζ, t) − ξ̂L(ζ, t)||∞. (4.1)

The final inequality remains valid when ξ̂L(ζ, t) represents the polynomials that interpolates ξ(ζ, t)
at the points (ζi, t j), where ζi are the zeros of ϕ(ν,ν+1)

i (ζ) and t j are the zeros of ϕ(ν,ν+1)
j (t). Subsequently,

by performing the same procedures outlined in [53, 54], we obtain

ξ(ζ, t) − ξ̂L(ζ, t) =
∂L+1 ξ(η, t)
∂ ζL+1 (L + 1)!

L∏
i=0

(ζ − xi) +
∂L+1 ξ(ζ, µ)
∂ tL+1 (L + 1)!

L∏
j=0

(t − t j)

−
∂2M+2 ξ(η̂, µ̂)

∂ ζL+1 ∂ tL+1 ((L + 1)!)2

L∏
i=0

(ζ − xi)
L∏

j=0

(t − t j),

(4.2)

where η, η̂, µ, µ̂ ∈ (0, 1).
Now, we have

∥∥∥ξ(ζ, t) − ξ̂L(ζ, t)
∥∥∥
∞
≤ max

(ζ,t)∈Ω

∣∣∣∣∣∣∂L+1 ξ(η, t)
∂ ζL+1

∣∣∣∣∣∣ ||
∏L

i=0(ζ − ζi)||∞
(L + 1)!

+ max
(ζ,t)∈Ω

∣∣∣∣∣∣∂L+1 ξ(ζ, µ)
∂ tL+1

∣∣∣∣∣∣ ||
∏L

j=0(t − t j)||∞
(L + 1)!

− max
(ζ,t)∈Ω

∣∣∣∣∣∣∂2M+2 ξ(η̂, µ̂)
∂ ζL+1 ∂ tL+1

∣∣∣∣∣∣ ||
∏L

i=0(ζ − ζi)||∞ ||
∏L

j=0(t − t j)||∞
((L + 1)!)2 .

(4.3)

Since ξ(ζ, t) is a smooth function on Ω, then we can assume the existence of the positive constants
L1, L2, and L3, such that

max
(ζ,t)∈Ω

∣∣∣∣∣∣∂L+1 ξ(η, t)
∂ ζL+1

∣∣∣∣∣∣ ≤ L1, max
(ζ,t)∈Ω

∣∣∣∣∣∣∂L+1 ξ(ζ, µ)
∂ tL+1

∣∣∣∣∣∣ ≤ L2, max
(ζ,t)∈Ω

∣∣∣∣∣∣∂2M+2 ξ(η̂, µ̂)
∂ ζL+1 ∂ tL+1

∣∣∣∣∣∣ ≤ L3. (4.4)

Using the one-to-one mapping ζ = 1
2 (z + 1) between [−1, 1] and [0, 1], we can minimize the factor∥∥∥∏L

i=0(ζ − ζi)
∥∥∥
∞

. More precisely, we have
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min
ζi∈[0,1]

max
ζ∈[0,1]

∣∣∣∣∣∣∣
L∏

i=0

(ζ − ζi)

∣∣∣∣∣∣∣ = min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣∣∣∣
L∏

i=0

1
2

(z − zi)

∣∣∣∣∣∣∣
=

(
1
2

)L+1

min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣∣∣∣
L∏

i=0

(z − zi)

∣∣∣∣∣∣∣
=

(
1
2

)L+1

min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣∣∣∣ϕ
(ν,ν+1)
L+1 (z)

Vν
L

∣∣∣∣∣∣∣ ,
(4.5)

where Vν
L
=

2−L Γ(ν + 1)Γ(2L + 2 ν + 2)
Γ(L + ν + 1)Γ(L + 2 ν + 2)

is the leading coefficient of ϕ(ν,ν+1)
L+1 (z), and zi are the zeros of

ϕ(ν,ν+1)
L+1 (z). Moreover,

∣∣∣∏L

j=0(t − t j)
∣∣∣
∞

can be minimized with the aid of the mapping: t = 1
2 (t̄ + 1).

min
t j∈[0,τ]

max
t∈[0,τ]

∣∣∣∣∣∣∣
L∏

j=0

(t − t j)

∣∣∣∣∣∣∣ =
(
1
2

)L+1

min
t̄ j∈[−1,1]

max
t̄∈[−1,1]

∣∣∣∣∣∣∣ϕ
(ν,ν+1)
L+1 (t̄)

V̂ν
L

∣∣∣∣∣∣∣ , (4.6)

where V̂ν
L
=

2−L Γ(ν + 1)Γ(2L + 2 ν + 2)
Γ(L + ν + 1)Γ(L + 2 ν + 2)

is the leading coefficient of ϕ(ν,ν+1)
L+1 (t̄) and t̄ j are the roots of

ϕ(ν,ν+1)
L+1 (t̄).

Now, we have

IνL = max
z∈[−1,1]

∣∣∣ϕ(ν,ν+1)
L+1 (z)

∣∣∣ = max
t̄∈[−1,1]

∣∣∣ϕ(ν,ν+1)
L+1 (t̄)

∣∣∣ = ∣∣∣ϕ(ν,ν+1)
L+1 (1)

∣∣∣ = ν +L + 1. (4.7)

Therefore, inequality (4.4) together with Eqs (4.5) and (4.6) leads to

∥∥∥ξ(ζ, t) − ξL(ζ, t)
∥∥∥
∞
≤ L1

( 1
2 )L+1 Iν

L

Vν
L

(L + 1)!
+ L2

(1
2 )L+1 Iν

L

V̂ν
L

(L + 1)!
+ L3

( 1
4 )L+1 (Iν

L
)2

Vν
L

V̂ν
L

((L + 1)!)2
. (4.8)

This gives an estimation of the absolute error.

4.2. Error analysis in L2- norm

Theorem 3. Given that ∂
i+ j ξ(ζ,t)
∂ ζi ∂ t j ∈ C(Ω), i, j = 0, 1, 2, ...,L + 1, and let ξL(ζ, t) be the proposed numer-

ical solution belonging to ∆L, and

ML = sup
(ζ,t)∈Ω

∣∣∣∣∣∣∂2 (L+1) ξ(ζ, t)
∂ ζL+1 ∂ tL+1

∣∣∣∣∣∣ , (4.9)

where Ω = (0, 1) × (0, 1). Then, the following estimation holds:

∥ξ(ζ, t) − ξL(ζ, t)∥2 ≲
ML Γ(ν + 1)
Lν+1((L + 1)!)2 , (4.10)

where â ≲ ā means that there exist a generic constant n such that â ≤ n ā.
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Proof. Assume that

vL(ζ, t) =
L∑

i=0

L−i∑
j=0

(
∂i+ j ξ(ζ, t)
∂ ζ i ∂ t j

)
(0,0)

ζ i t j

i! j!
, (4.11)

is the Taylor expansion of ξ(ζ, t) about the point (0, 0), and

ξ(ζ, t) − vL(ζ, t) =
ζL+1 tL+1 ∂2 (L+1) ξ(n̄, n̂)
((L + 1)!)2 ∂ ζL+1 ∂ tL+1 , (n̄, n̂) ∈ Ω. (4.12)

Since ξL(ζ, t) is the best approximate solution of ξ(ζ, t), then according to the concept of the best
approximation, we obtain

∥ξ(ζ, t) − ξL(ζ, t)∥
2
2 ≤ ∥ξ(ζ, t) − vL(ζ, t)∥

2
2

=

∫ 1

0

∫ 1

0

ML
2 ζ2 (L+1) t2 (L+1)

((L + 1)!)4 ŵ(ζ, t) d ζ d t

=
ML

2 Γ2(ν + 1)Γ2 (2 (L + 2) + ν)
((L + 1)!)4 Γ2(2 (L + ν + 2) + 1)

.

(4.13)

According to the inequality [55]
Γ(z + a)
Γ(z + b)

≤ oa,b
z za−b, (4.14)

where z ≥ 1, z + a > 1, z + b > 1, and a, b are any constants, and

oa,b
z = exp

(
a − b

2 (z + b − 1)
+

1
12 (z + a − 1)

+
(a − b)2

z

)
= 1 + O(z−1).

(4.15)

We can rewrite Eq (4.13) as

∥ξ(ζ, t) − ξL(ζ, t)∥
2
2 ≲

ML
2 Γ2(ν + 1)

L2 (ν+1)((L + 1)!)4 . (4.16)

Consequently, we get the following estimation

∥ξ(ζ, t) − ξL(ζ, t)∥2 ≲
ML Γ(ν + 1)
Lν+1((L + 1)!)2 . (4.17)

This completes the proof of this theorem.

Theorem 4. Suppose that ξ(ζ, t), ξL(ζ, t), and ∂
i+ j ξ(ζ,t)
∂ ζi ∂ t j satisfy the condition of Theorem 3 and

NL,m = sup
(ζ,t)∈Ω

∣∣∣∣∣∣ ∂2L−m+2 ξ(ζ, t)
∂ ζL−m+1 ∂ tL+1

∣∣∣∣∣∣ , m ∈ N. (4.18)

Then, the following estimation holds:∥∥∥∥∥∥∂m ( ξ(ζ, t) − ξL(ζ, t))
∂ ζm

∥∥∥∥∥∥
2

≲
NL,m Γ(ν + 1)

(L − m)
1
2 (ν+1)L

1
2 (ν+1) (L − m + 1)! (L + 1)!

. (4.19)
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Proof. Assume that ∂
m vL(ζ,t)
∂ ζm

is the Taylor expansion of ∂
m ξ(ζ,t)
∂ ζm

about the point (0, 0). Then, the residual

between ∂
m ξ(ζ,t)
∂ ζm

and ∂
m vL(ζ,t)
∂ ζm

can be written as

∂m ( ξ(ζ, t) − vL(ζ, t))
∂ ζm =

ζL−m+1 tL+1 ∂2L−m+2 ξ(n̄1, n̂2)
Γ(L + 2)Γ(L − m + 2) ∂ ζL−m+1 ∂ tL+1 , (n̄1, n̂2) ∈ Ω. (4.20)

Since ∂
m ξL(ζ,t)
∂ ζm

is the best approximation of ∂
m ξ(ζ,t)
∂ ζm

, by the concept of the best approximation, we get∥∥∥∥∥∥∂m (ξ(ζ, t) − ξL(ζ, t))
∂ ζm

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∂m (ξ(ζ, t) − vL(ζ, t))
∂ ζm

∥∥∥∥∥∥
2

. (4.21)

The desired result can be obtained by repeating similar procedures as in Theorem 3.

Theorem 5. Suppose that ξ(ζ, t), ξL(ζ, t), and ∂
i+ j ξ(ζ,t)
∂ ζi ∂ t j satisfy the condition of Theorem 3 and

ZL,n = sup
(ζ,t)∈Ω

∣∣∣∣∣∣ ∂2L−n+2 ξ(ζ, t)
∂ ζL−n+1 ∂ tL+1

∣∣∣∣∣∣ , n ∈ N. (4.22)

Then, the following estimation holds:∥∥∥∥∥∥∂n ( ξ(ζ, t) − ξL(ζ, t))
∂ tn

∥∥∥∥∥∥
2

≲
ZL,n Γ(ν + 1)

(L − n)
1
2 (ν+1)L

1
2 (ν+1) (L − n + 1)! (L + 1)!

. (4.23)

Proof. Similar to the proof of Theorem 4.

Theorem 6. Suppose that Dαt ξ(ζ, t) ∈ C(Ω), α ∈ (0, 1), satisfy the conditions of Theorem 3. Then, the
following estimation holds:

∥Dαt (ξ(ζ, t) − ξL(ζ, t))∥2 ≲
ML Γ(ν + 1)

(L − α)
1
2 (ν+1)L

1
2 (ν+1) Γ(L − α + 2) (L + 1)!

. (4.24)

Proof. According to Eq (4.12) and the properties of the Caputo operator in (2.3), one gets∣∣∣Dαt (ξ(ζ, t) − ξL(ζ, t))
∣∣∣
2
≤

ζL+1 tL−α+1ML

(L + 1)!Γ(L − α + 2)
. (4.25)

Now, taking ∥.∥2 for both sides and follwoing similar steps as in Theorems 3 and 4, we get the
desired result.

Corollary 1. The following estimation holds:

∥D1−α
t (ξ(ζ, t) − ξL(ζ, t))∥2 ≲

ML Γ(ν + 1)

(L + α − 1)
1
2 (ν+1)L

1
2 (ν+1) Γ(L + α + 1) (L + 1)!

. (4.26)

Proof. Special case from Theorem 6 after replacing α with 1 − α.

Corollary 2. The following estimation holds:∥∥∥∥∥∥D1−α
t
∂m ( ξ(ζ, t) − ξL(ζ, t))

∂ ζm

∥∥∥∥∥∥
2

≲
NL,m Γ(ν + 1)

(L + α − 1)
1
2 (ν+1) (L − m)

1
2 (ν+1) Γ(L + α + 1) (L − m + 1)!

. (4.27)
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Proof. The proof of Corollary 2 can be easily obtained from the application of Corollary 1 along with
Theorem 4.

Theorem 7. The norm ∥Res(ζ, t)∥2 will be sufficiently small for sufficiently large values of L.

Proof. Equations (3.6) and (3.1) enable us to write Res(ζ, t) as

Res(ζ, t) = ξLt (ζ, t) − D1−ρ1
t K ξLxx(ζ, t) + ν̂D1−ρ2

t ξL(ζ, t) − f (ζ, t)

=
∂ ( ξL(ζ, t) − ξ(ζ, t))

∂ t
− D1−ρ1

t K
∂2 ( ξL(ζ, t) − ξ(ζ, t))

∂ ζ2 + ν̂D1−ρ2
t (ξL(ζ, t) − ξ(ζ, t)).

(4.28)

Taking the L2-norm and using Theorem 5 along with Corollaries 1 and 2, we get

∥Res(ζ, t)∥2 ≲
ZL,1 Γ(ν + 1)

(L − 1)
1
2 (ν+1)L

1
2 (ν+1) (L)! (L + 1)!

+ K
NL,2 Γ(ν + 1)

(L + ρ1 − 1)
1
2 (ν+1) (L − 2)

1
2 (ν+1) Γ(L + ρ1 + 1) (L − 1)!

+ ν̂
ML Γ(ν + 1)

(L + ρ2 − 1)
1
2 (ν+1)L

1
2 (ν+1) Γ(L + ρ2 + 1) (L + 1)!

.

(4.29)

Lastly, it is clear from the final equation that for large enough values of L, ∥Res(ζ, t)∥2 will be small
enough. We have finished proving the theorem.

5. Illustrative examples

The method discussed in Section 3 is used for solving a few illustrative examples to demonstrate the
viability and effectiveness of the suggested generalized third-kind Chebyshev tau method (G3KCTM).

Test Problem 1. [56, 57] Consider the equation

ξt(ζ, t) = D1−ρ1
t ξζζ(ζ, t) − D1−ρ2

t ξ(ζ, t) +
(
2 t +

2 π2 tρ1+1

Γ(2 + ρ1)
+

2 tρ2+1

Γ(2 + ρ2)

)
sin(π ζ), (5.1)

governed by

ξ(ζ, 0) = 0, 0 < ζ < 1,
ξ(0, t) = ξ(1, t) = 0, 0 < t < 1,

(5.2)

whose exact solution is ξ(ζ, t) = t2 sin(π ζ).

Table 1 presents a comparison of the L∞ error between our method and the methods in [56, 57]
when ρ1 = ρ2 = 0.5, and ν = 3 with L = 13 and L = 14. At ρ1 = ρ2 = 0.3, ν = 1, and various values
of L, the absolute errors (AEs) are shown in Figure 1. The L∞ error at L = 14, ν = 1 compared to
the method in [56] at various ρ1 and ρ2 values is also shown in Table 2. Also, at various ρ1 and ρ2

values, Table 3 compares our method to the method in [57] in terms of the L∞ error at L = 14, ν = 2.
Table 4 shows the maximum absolute errors (MAEs) for various ν values for 0 < t < 1 and L = 14
with ρ1 = ρ2 = 0.4.
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Table 1. L∞ error for problem 1 using different methods.

ρ1 = ρ2 Method in [56] (M = N = 13) Method in [57] (n = 2,m = 70) G3KCTM (L = 13) G3KCTM (L = 14)
0.5 1.7881 × 10−5 4.86 × 10−10 1.05851 × 10−9 4.07968 × 10−12

Figure 1. The AEs of problem 1 for different L.

Table 2. L∞ error for problem 1 using different methods.

ρ1 = 0.3, ρ2 = 0.9 ρ1 = 0.7, ρ2 = 0.6
Method in [56] at M = N = 13 G3KCTM Method in [56] at M = N = 13 G3KCTM
2.1018 × 10−5 1.87761 × 10−12 9.3019 × 10−6 2.88541 × 10−12

Table 3. Comparison of L∞ error for problem 1.

ρ1 = ρ2 = 0.8 ρ1 = 0.1, ρ2 = 0.9
Method in [57] (n = 2,m = 70) G3KCTM Method in [57] (n = 2,m = 70) G3KCTM
4.83 × 10−10 2.87714 × 10−12 4.96 × 10−10 2.98844 × 10−12
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Table 4. The MAEs of problem 1 when 0 < t < 1.

ρ1 = ρ2 = 0.4
ζ ν = 0.5 ν = 1.5 ν = 2.5
0.1 1.1191 × 10−13 1.85907 × 10−13 2.64344 × 10−13

0.2 2.26374 × 10−13 3.84193 × 10−13 5.58886 × 10−13

0.3 3.49498 × 10−13 5.92748 × 10−13 8.66862 × 10−13

0.4 4.76841 × 10−13 8.1346 × 10−13 1.19516 × 10−12

0.5 6.20171 × 10−13 1.05727 × 10−12 1.55487 × 10−12

0.6 7.74936 × 10−13 1.32483 × 10−12 1.95222 × 10−12

0.7 9.52016 × 10−13 1.62603 × 10−12 2.39808 × 10−12

0.8 1.1533 × 10−13 1.97009 × 10−12 2.90706 × 10−12

0.9 1.37224 × 10−13 2.36250 × 10−12 3.49887 × 10−12

Test Problem 2. [57] Consider the equation

ξt(ζ, t) =D1−ρ1
t ξζζ(ζ, t) − D1−ρ2

t ξ(ζ, t) + 3 t2 (ζ2 − ζ) −
12 t2+ρ1

Γ(3 + ρ1)
−

2 tρ1−1

Γ(ρ1)

+

(
6 t2+ρ2

Γ(3 + ρ2)
+

tρ2−1

Γ(ρ2)

)
(ζ2 − ζ),

(5.3)

governed by

ξ(ζ, 0) = ζ2 − ζ, 0 < ζ < 1,
ξ(0, t) = ξ(1, t) = 0, 0 < t < 1,

(5.4)

whose exact solution is ξ(ζ, t) =
(
t3 + 1

) (
ζ2 − ζ

)
.

At L = 3, ν = 3 and with different ρ1 and ρ2, we compare our method to the method in [57] in terms
of L2 and L∞ errors in Table 5. This demonstrates the accuracy of our approach. With L = 3 and
ρ1 = ρ2 = 0.4, the AEs are displayed in Figure 2.

Table 5. Comparison of L2 and L∞ errors for problem 2.

L2 error L∞ error
ρ1 ρ2 Method in [57] (n = 3,m = 70) G3KCTM Method in [57] (n = 3,m = 70) G3KCTM
0.5 0.5 5.33 × 10−11 1.57885 × 10−15 7.54 × 10−12 1.19579 × 10−12

0.8 0.8 6.21 × 10−11 9.70832 × 10−17 8.33 × 10−12 6.15896 × 10−14

0.1 0.9 3.07 × 10−11 2.22752 × 10−15 5.00 × 10−12 1.06598 × 10−12
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Figure 2. The AEs of problem 2 for different ν.

Test Problem 3. Consider the equation

ξt(ζ, t) = D1−ρ1
t ξζζ(ζ, t) − D1−ρ2

t ξ(ζ, t) + cos(πζ)
(

6π2tρ1+2

Γ(ρ1 + 3)
+

6tν2+2

Γ(ρ2 + 3)
+ 3t2

)
, (5.5)

governed by

ξ(ζ, 0) = 0, 0 < ζ < 1,
ξ(0, t) = t3, ξ(1, t) = −t3, 0 < t < 1,

(5.6)

whose exact solution is ξ(ζ, t) = t3 cos(π ζ).
Figure 3 displays the AEs at ρ1 = 0.3, ρ2 = 0.9, ν = 1, and different values of L. Table 6 displays

the MAEs when 0 < t < 1 at L = 16 and ρ1 = 0.1, ρ2 = 0.7, and different values of ν. Figure 4 shows
the AEs at ρ1 = ρ2 = 0.5, L = 16, and different ν.

Test Problem 4. Consider the equation

ξt(ζ, t) = D1−ρ1
t ξζζ(ζ, t) − D1−ρ2

t ξ(ζ, t) + f (ζ, t), (5.7)

governed by

ξ(ζ, 0) = 0, 0 < ζ < 1,
ξ(0, t) = 0, ξ(1, t) = t5/2, 0 < t < 1,

(5.8)

where f (ζ, t) is chosen such that the exact solution of this problem is ξ(ζ, t) = t5/2 ζ3.
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Table 7 displays the AEs at different values of t when ρ1 = ρ2 = 0.5, ν = 3, andL = 8. Also, Table 8
displays the AEs at different values of t when ρ1 = 0.3, ρ2 = 0.9, ν = 2, and L = 8. Finally, Figure 5
shows the AEs (left), and approximate solution (right) at ρ1 = 0.3, ρ2 = 0.9, ν = 2, when L = 8.

Figure 3. The AEs of problem 3 for different L.

Table 6. The MAEs of problem 3 when 0 < t < 1.

ρ1 = 0.1, ρ2 = 0.7
ζ ν = 1 ν = 2 ν = 3
0.1 7.99361 × 10−15 1.06581 × 10−14 2.78666 × 10−14

0.2 1.83187 × 10−14 2.80886 × 10−14 5.34017 × 10−14

0.3 2.85327 × 10−14 4.60743 × 10−14 7.92699 × 10−14

0.4 3.96627 × 10−14 6.48648 × 10−13 1.06332 × 10−14

0.5 5.16244 × 10−14 1.05727 × 10−14 1.37115 × 10−13

0.6 6.54754 × 10−14 1.05776 × 10−13 1.70586 × 10−13

0.7 8.31557 × 10−14 1.27898 × 10−13 2.35811 × 10−13

0.8 9.50351 × 10−14 1.49991 × 10−13 3.2252 × 10−13

0.9 8.57092 × 10−14 1.60649 × 10−13 6.72462 × 10−13
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Figure 4. The AEs of problem 3 for different ν.

Table 7. The AEs of problem 4.

ρ1 = ρ2 = 0.5
ζ t = 0.3 t = 0.6 t = 0.9
0.1 4.91328 × 10−6 3.46456 × 10−6 3.19652 × 10−6

0.2 5.35939 × 10−6 3.79954 × 10−6 3.4376 × 10−6

0.3 5.80043 × 10−6 4.13489 × 10−6 3.72544 × 10−6

0.4 6.11063 × 10−6 4.38298 × 10−6 4.02759 × 10−6

0.5 5.92602 × 10−6 4.29088 × 10−6 4.10157 × 10−6

0.6 5.32135 × 10−6 3.91388 × 10−6 4.00213 × 10−6

0.7 4.37348 × 10−6 3.30864 × 10−6 3.8183 × 10−6

0.8 2.99534 × 10−6 2.41761 × 10−6 3.52239 × 10−6

0.9 1.25017 × 10−6 1.29025 × 10−6 3.14766 × 10−6
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Table 8. The AEs of problem 4.

ρ1 = 0.3, ρ2 = 0.9
ζ t = 0.2 t = 0.5 t = 0.8
0.1 6.17916 × 10−6 4.79269 × 10−6 4.04515 × 10−6

0.2 1.34025 × 10−6 1.10655 × 10−6 9.46457 × 10−7

0.3 1.2286 × 10−6 8.23787 × 10−7 6.59586 × 10−7

0.4 3.30855 × 10−6 2.37157 × 10−6 1.92721 × 10−6

0.5 5.42726 × 10−6 3.94383 × 10−6 3.19466 × 10−6

0.6 6.38524 × 10−6 4.6164 × 10−6 3.67695 × 10−6

0.7 6.00728 × 10−6 4.25325 × 10−6 3.25385 × 10−6

0.8 5.07052 × 10−6 3.4509 × 10−6 2.42248 × 10−6

0.9 2.93615 × 10−6 1.71392 × 10−6 7.57717 × 10−7

Figure 5. The AEs (left) and approximate solution (right) of problem 4.

6. Concluding remarks

This article analyzed an algorithm based on the tau method utilizing the GCPs3 to solve the TFCE
that arises in neuronal dynamics. The philosophy of the derivation of the tau method was based on en-
forcing the residual of the equation to vanish. The algorithm converted the equation with its underlying
conditions into a solvable matrix system. The entries of the matrices are explicitly computed using the
explicit formulas of the integer and the fractional derivatives of the GCPs3. The error analysis is
discussed in detail. Additionally, some examples and comparisons were displayed. The presented ex-
amples showed the applicability and high accuracy of the proposed algorithm. We believe the proposed
approach in this paper may be applied to other significant problems in the applied sciences.
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