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1. Introduction

In this paper, we consider the Cauchy problem for the following fourth-order nonlinear
parabolic equation: ∂tu + ∆2u + u = f (u), (t, x) ∈ (0,T ) × R4,

u(0, x) = u0(x), x ∈ R4,
(1.1)

where u0 ∈ H2(R4), and f (u) ∈ C1(R,R) is an exponential nonlinearity and satisfies the following
assumptions:

(A1) f (0) = 0.
(A2) There exists ν0 > 0 such that for some constant Cδ > 0 and any δ > 0, we have

| f (s1) − f (s2)| ≤ Cδ|s1 − s2|(eν0(1+δ)s2
1 + eν0(1+δ)s2

2), s1, s2 ∈ R.

(A3) There exists ϑ > 0 such that

u f (u) ≥ (2 + ϑ)F(u),

where F(u) :=
∫ u

0
f (ς)dς.

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2024289


6226

The fourth-order parabolic equation can describe various physical phenomena, such as phase tran-
sitions, thin film, and lubrication theories. Specifically, it describes the evolution process of nanoscale
thin film epitaxial growth [1–6]. Currently, many authors have studied the initial-boundary value prob-
lems associated with fourth-order parabolic equations and proved the existence of global solutions and
the blow-up behavior of solutions for this equation [7–9].

Ishiwata et al. [10] considered the initial value problem for the following nonlinear parabolic equa-
tion with exponential terms∂tu − ∆u = ±u(eu2−1), (t, x) ∈ R+ × R2,

u(0, x) = u0(x), x ∈ R2.
(1.2)

They established the existence and uniqueness of a local solution in H1(R2) for problem (1.2)
and demonstrated that the solution with negative energy blows up in finite time. Subsequently, Saa-
nouni [11, 12] extended this result to 2n-dimensional space and generalized the nonlinear term to a
general exponential nonlinearity. The specific result is as follows: let u0 ∈ Hn(R2n) and the nonlin-
ear term f satisfies certain. Then, there exists a unique maximal solution u ∈ C([0,T ∗),Hn(R2n)), and
when u0 belongs to the unstable set, the solution blows up in finite time. In addition, Ishiwata et al. [13]
studied the following Cauchy problem:∂tu = ∆u − u + λ f (u), (t, x) ∈ (0,T ) × R2,

u(0, x) = u0(x), x ∈ R2,
(1.3)

where λ > 0 and f (u) = 2α0ueα0u2
. Utilizing the contraction mapping principle, they obtained the local

existence and uniqueness of solutions as 0 < λ < 1
2α0

. Meanwhile, they gave the blow-up properties
of the solutions by applying the concavity method. Wang and Qian [14] used an improved concavity
method to prove the blow-up of solutions with arbitrarily high initial energy and provided upper and
lower bounds for the blow-up time.

Han [8] discussed the initial-boundary value problem for the following fourth-order parabolic equa-
tion: 

ut + ∆
2u = k(t) f (u), (x, t) ∈ Ω × (0,T ),

u = ∂u
∂v = 0, (x, t) ∈ ∂Ω × (0,T ),

u(x, 0) = u0, x ∈ Ω.

(1.4)

By using the differential inequalities, he proved that under specific initial value conditions, the
solution to this problem blows up in finite time, and derived upper and lower bounds for the blow-up
time. When k(t) = 1, f (s) = |s|p−1s, 1 < p < 2∗−1 for n > 4 and 1 < p < +∞ for n ≤ 4, where 2∗ = 2n

n−4 .
Besides, Philippin [15] gave an upper and a lower bound by using differential inequalities method when
f (u) = |u|p−1u. Han [7] studied the equation

ut + ∆
2u − div(|∇u|p−2∇u) = |u|q−1u,

where the p-Laplacian diffusion term is present. He established the global well-posedness and finite-
time blow-up of solutions to problem (1.4) by applying the potential well method, initially introduced
by Payne and Sattinger [16] for studying the global existence of solutions for nonlinear hyperbolic
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equations, and further developed by others [17–20]. For the following fourth-order semilinear quasi-
linear parabolic equation containing a strong damping term and a nonlocal source term,

ut − α∆ut − ∆u + ∆2u = |u|p−1u −
1
|Ω|

∫
Ω

|u|p−1udx. (1.5)

Polat [21] obtained blow-up results for the solutions and showed lower bound estimates for the
blow-up time.

Inspired by the above research, this paper considers the blow-up properties of solutions to the initial
value problem for a fourth-order parabolic equation with exponential terms. By using an improved
concavity method, we establish the upper bound for the blow-up time of the solution when the initial
value u0 belongs to the unstable set, i.e.,

T ∗ ≤ 2
3ϑ+2

2ϑ

ϑ
(

C1
C2

) 2(1+ϑ)
ϑ

2
√

C1

(
1 −

(
1 +

(C1

C2

) 2(1+ϑ)
ϑ
ψ(0)

)− 1
ϑ

)
,

where the specific indicators of this will be given in Theorem 2. Simultaneously, when the initial value
u0 satisfies ∥∆u0∥

2 ≤ h and ∥u0∥
2 ≤ l, where h and l are constants, we provide the lower bound for the

blow-up time of the solution, i.e.,

T ∗ ≥
(M + l

2 )−δ
2

CδCδ2

(32π2

ν0
(1 − δ)

) 1
1+δ2 ,

where the specific indicators of this will be given in Theorem 3. This complements the results in [12].
The structure of the paper is as follows. In Section 2, we give some preliminaries. Section 3 presents

the upper bound for the blow-up time of problem (1.1). In Section 4, we focus on the lower bound for
the blow-up time of problem (1.1).

2. Preliminaries

For simplicity, we use ∥ · ∥p and ∥ · ∥ to denote the norms in Lp(R4) and L2(R4), respectively. The
constant C appearing in this paper may vary from line to line.

Define the functionals in H2(R4)) as follows:

K(u) :=
1
2
∥∆u∥2 +

1
2
∥u∥2 −

∫
R4

F(u)dx, (2.1)

S (u) := ∥∆u∥2 + ∥u∥2 −
∫

R4
u f (u)dx. (2.2)

Let

m := inf
{
K(v) : v ∈ H2(R4)\{0}, S (v) = 0

}
, (2.3)

and define the stable and unstable sets as follows:

W :=
{
v ∈ H2(R4) : K(v) < m, S (v) ≥ 0

}
, (2.4)
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V :=
{
v ∈ H2(R4) : K(v) < m, S (v) < 0

}
. (2.5)

The maximal existence time of the solution u(t, x) to problem (1.1) is defined as

T ∗ := sup
{
T > 0 : u ∈ C

(
[0,T ]; H2(R4)

)}
∈ (0,+∞].

Lemma 1 ( [22]). For any α ∈ (0, 32π2), there exists C(α) > 0 such that∫
R4

(eαu2
− 1)dx ≤ C(α)∥u∥2, f or any u ∈ H2(R4) with ∥∆u∥ ≤ 1,

and the above inequality is false if α > 32π2.

Lemma 2 ( [11]). For any t ∈ (0,T ), we have

∂

∂t
K(u) = −∥∂tu∥2, (2.6)

1
2
∂

∂t
∥u∥2 = −S (u). (2.7)

Theorem 1 (Theorem 2.5, [12]). Let u ∈ C([0,T ∗),H2(R4)), f satisfies the assumptions (A1)–(A3),
and u0 ∈ H2(R4). If u(t0) ∈ V for some t0 ∈ [0,T ∗), then the solution u blows up in the sense of the L2

norm, i.e., lim
t→T ∗
∥u(t)∥ = +∞.

3. Upper bound for the blow-up time

In this section, we will discuss the upper bound for the blow-up time of the solution. To prove the
main result, we present the following lemma.

Lemma 3 (Lemma 4.2, [23]). If ψ(t) is a non-increasing function on [0,+∞] and satisfies

[ψ
′

(t)]2 ≥ a + bψ(t)2+ 1
k , ∀t ≥ 0,

where a, b > 0 are constants, then there exists a finite time T ∗ > 0 such that

lim
t→T ∗−

ψ(t) = 0,

where

T ∗ ≤ 2
3k+1

2k
k( a

b )2+ 1
k

√
a

(
1 −

(
1 + (

a
b

)2+ 1
kψ(0)

)− 1
2k )
.

Theorem 2. Let u ∈ C([0,T ∗),H2(R4)) and u0 ∈ H2(R4). If u(t0) ∈ V, for some t0 ∈ [0,T ∗), then an
upper bound for the blow-up time of the solution u is

T ∗ ≤ 2
3ϑ+2

2ϑ

ϑ
(

C1
C2

) 2(1+ϑ)
ϑ

2
√

C1

(
1 −

(
1 +

(C1

C2

) 2(1+ϑ)
ϑ
ψ(0)

)− 1
ϑ

)
,

where
ψ(0) = (T ∗∥u0∥

2 + bµ2)−
ϑ
2 ,C1 =

(
ψ
′

(0)
)2
−C2(ψ(0))

2(1+ϑ)
ϑ ,

C2 = [−2(2 + ϑ)(αγ − β2) + 2(2 + ϑ)K(u0) + 2(1 + ϑ)b] ·
ϑ2

1 + ϑ
.
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Proof. The blow-up of the solution is given in Theorem 1. Next, we will prove the upper bound for the
blow-up time. We first define the auxiliary functional

Q(t) :=
∫ t

0
∥u(s)∥2ds + (T ∗ − t)∥u0∥

2 + b(t + µ)2, ∀t ∈ [0,T ∗) (3.1)

where b > 0 and µ > 0.
By (3.1), we have

Q
′

(t) =∥u(t)∥2 − ∥u0∥
2 + 2b(t + µ) =

∫ t

0

d
ds
∥u(s)∥2ds + 2b(t + µ), (3.2)

Q
′′

(t) =
d
dt
∥u(t)∥2 + 2b. (3.3)

According to (3.3), Lemma 2, and assumption (A3), we get

1
2
Q
′′

(t) =
1
2

d
dt
∥u(t)∥2 + b = −S (u(t)) + b

= − ∥∆u(t)∥2 − ∥u(t)∥2 +
∫

R4
u(t) f (u(t))dx + b

≥ − ∥∆u(t)∥2 − ∥u(t)∥2 +
∫

R4
(2 + ϑ)F(u(t))dx + b (3.4)

≥ − (2 + ϑ)K(u(t)) +
ϑ

2
(∥∆u(t)∥2 + ∥u(t)∥2) + b

≥ − (2 + ϑ)K(u(t)) +
ϑ

2
∥u(t)∥2 + b

= − (2 + ϑ)K(u0) + (2 + ϑ)
∫ t

0
∥∂su(s)∥2ds +

ϑ

2
∥u(t)∥2 + b.

Choosing b > (2 + ϑ)K(u0), we get Q
′′

(t) > 0 for any t ∈ [0,T ∗). Thus, Q
′

(t) is monotonically
increasing with respect to t on [0,T ∗). Since Q

′

(0) = 2bµ > 0, it follows that Q(t) is monotonically
increasing on [0,T ∗). Furthermore, by Q(0) = T ∗∥u0∥

2 + bµ2 > 0, we have Q(t) > 0, ∀t ∈ [0,T ∗).
In addition, combining (3.1), (3.2), and (3.4), we obtain

Q(t) ≥
∫ t

0
∥u(s)∥2ds + b(t + µ)2 := α, (3.5)

Q
′

(t) = 2
(
1
2

∫ t

0

d
ds
∥u(s)∥2ds + b(t + µ)

)
:= 2β, (3.6)

Q
′′

(t) ≥ − 2(2 + ϑ)K(u0) + 2(2 + ϑ)
( ∫ t

0
∥∂su(s)∥2ds + b

)
− (2(2 + ϑ) − 2)b

:= − 2(2 + ϑ)K(u0) + 2(2 + ϑ)γ − 2(1 + ϑ)b.
(3.7)

For any z ∈ R, we have

αz2 − 2βz + γ ≥
∫ t

0
(∥zu(s)∥ − ∥∂su(s)∥)2ds + b(z(t + µ) − 1)2 ≥ 0,

thus αγ − β2 ≥ 0.
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From (3.5)–(3.7), we get

Q(t)Q
′′

(t) −
2 + ϑ

2
[Q

′

(t)]2

≥ α[−2(2 + ϑ)K(u0) + 2(2 + ϑ)γ − 2(1 + ϑ)b] −
2 + ϑ

2
· 4β2

≥ 2(2 + ϑ)(αγ − β2) − (2(2 + ϑ)K(u0) + 2(1 + ϑ)b)Q(t).

(3.8)

Let
ψ(t) := (Q(t))−

ϑ
2 , (3.9)

and then
ψ
′

(t) = −
ϑ

2
(Q(t))−

2+ϑ
2 Q

′

(t), (3.10)

ψ
′′

(t) = −
ϑ

2
(Q(t))−

2+ϑ
2 −1[Q(t)Q

′′

(t) −
2 + ϑ

2
(Q

′

(t))2]

≤ϑ(ψ(t))
2+ϑ

2 [−2(2 + ϑ)(αγ − β2) + 2(2 + ϑ)K(u0) + 2(1 + ϑ)b].
(3.11)

From Q(t) > 0 and Q
′

(t) > 0, we have ψ
′

(t) < 0. Multiplying both sides of (3.11) by ψ
′

(t) and
integrating from 0 to t, we obtain

[ψ
′

(t)]2 ≥ C1 +C2(ψ(t))
2(1+ϑ)
ϑ ,

where
C1 = (ψ

′

(0))2 −C2(ψ(0))
2(1+ϑ)
ϑ ,

C2 = ϑ[−2(2 + ϑ)(αγ − β2) + 2(2 + ϑ)K(u0) + 2(1 + ϑ)b] ·
ϑ

1 + ϑ
> 0.

Next, we are going to prove C1 > 0.

C1 =(ψ
′

(0))2 − ϑ
[
−2(2 + ϑ)(αγ − β2) + 2(2 + ϑ)K(u0) + 2(1 + ϑ)b

]
·

ϑ

1 + ϑ
(ψ(0))

2(1+ϑ)
ϑ

=(−
ϑ

2
)2(T ∗∥u0∥

2 + bµ2)−(2+ϑ)(2bµ)2 − ϑ[−2(2 + ϑ)(αγ − β2)

+ 2(2 + ϑ)K(u0) + 2(1 + ϑ)b] ·
ϑ

1 + ϑ
(T ∗∥u0∥

2 + bµ2)−(1+ϑ)

=ϑ2(T ∗∥u0∥
2 + bµ2)−(2+ϑ)[b2µ2 −

1
1 + ϑ

(−2(2 + ϑ)(αγ − β2)

+ 2(2 + ϑ)K(u0) + 2(1 + ϑ)b)(T ∗∥u0∥
2 + bµ2)].

Since T ∗∥u0∥
2 + bµ2 > 0, when µ is large enough, we have C1 > 0.

Therefore, according to Lemma 3, we have

T ∗ ≤ 2
3ϑ+2

2ϑ
ϑ(C1

C2
)

2(1+ϑ)
ϑ

2
√

C1

(
1 −

(
1 +

(C1

C2

) 2(1+ϑ)
ϑ
ψ(0)

)− 1
ϑ
)
.
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4. Lower bound for the blow-up time

In this section, we will establish a lower bound for the blow-up time of the solution to problem (1.1).

Theorem 3. Let u ∈ C([0,T ∗),H2(R4)), f ∈ C2(R,R) satisfies assumptions (A1) and (A2), and u0 ∈

H2(R4). Let 0 < h < 32π2

ν0
and l > 0. If u0 satisfies ∥∆u0∥

2 ≤ h and ∥u0∥
2 ≤ l, then the lower bound for

the blow-up time is given by

T ∗ ≥
(M + l

2 )−δ
2

CδCδ2

(32π2

ν0
(1 − δ)

) 1
1+δ2 .

Proof. Let

φ(t) :=
1
2

∫
R4

u2(x, t)dx. (4.1)

From Theorem 1, we have

lim
t→T ∗

φ(t) = +∞. (4.2)

According to (A1), (A2), and (4.1), we obtain

φ
′

(t) =
1
2

d
dt

∫
R4

u2(x, t)dx = −∥∆u(t)∥2 − ∥u(t)∥2 +
∫

R4
u(t) f (u(t))dx

≤

∫
R4

u(t) f (u(t))dx ≤
∫

R4
|u(t) f (u(t))|dx ≤ Cδ

∫
R4

u2(eν0(1+δ)u2(s) + 1)dx

≤Cδ

∫
R4

u2(eν0(1+δ)u2(s) − 1)dx +Cδ

∫
R4

2u2dx

=2Cδ∥u∥2 +Cδ

∫
R4

u2(eν0(1+δ)u2(s) − 1)dx.

We write (1.1) as the equivalent integral form

u(t) = e−∆
2tu0 +

∫ t

0
e−(t−s)∆2

( f (u(s)) − u(s))ds. (4.3)

From 0 < h < 32π2

ν0
, we know that there exists δ > 0 such that h = 32π2

ν0
(1 − δ).

Defining the following set

Γ =
{
u ∈ L∞((0,T ),H2(R4)) : sup

t∈[0,T ]
∥∆u(t)∥2 ≤

32π2

ν0
(1 −

δ

2
), sup

t∈[0,T ]
∥u(t)∥2 ≤ 2l

}
. (4.4)

According to the Hölder inequality, we have∫
R4

u2(eν0(1+δ)u2(s) − 1)dx ≤∥u(t)∥22p

(∫
R4

(eν0q(1+δ)u2(s) − 1)dx
) 1

q

,
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where p, q > 1 and 1
p+

1
q = 1. Let q = 1+δ2, and then by the Trudinger-Moser inequality, we can obtain( ∫

R4
(eν0q(1+δ)u2(s) − 1)dx

) 1
q
=

( ∫
R4

(
e

32π2
h (1−δ)(1+δ)2(1+δ)u2(s) − 1

)
dx

) 1
1+δ2

=
( ∫

R4

(
e32π2(1−δ4)( u(s)

√
h

)2

− 1
)
dx

) 1
1+δ2 ≤ C

∥∥∥∥u(s)
√

h

∥∥∥∥ 2
1+δ2
≤ C

(32π2

ν0
(1 − δ)

)− 1
1+δ2 ∥u∥2.

(4.5)

From the Gagliardo-Nirenberg inequality for q ≥ 2, ∥u∥qLq ≤ C∥∆u∥q−2∥u∥2, and we know

∥u(t)∥22p ≤ C∥∆u(t)∥
2

1+δ2 ∥u∥
2δ2

1+δ2 ≤ C∥u∥2δ
2
. (4.6)

Combining (4.5) and (4.6), we have∫
R4

u2(eν0(1+δ)u2(s) − 1)dx ≤ C∥u∥2(1+δ2)
(32π2

ν0
(1 − δ)

)− 1
1+δ2 . (4.7)

Therefore

φ
′

(t) ≤Cδ

(
2 · 2l +C

(32π2

ν0
(1 − δ)

)− 1
1+δ2 ∥u∥2(1+δ2)

)
≤Cδ

(
4l +C

(32π2

ν0
(1 − δ)

)− 1
1+δ2 (φ(t))1+δ2)

≤CδC
(32π2

ν0
(1 − δ)

)− 1
1+δ2

(
M + φ(t)

)1+δ2

,

where M = 4l
C

(
32π2

ν0
(1 − δ)

) 1
1+δ2 .

Thus, we get

φ
′

(t)
[
CδC

(32π2

ν0
(1 − δ)

)− 1
1+δ2 (M + φ(t))1+δ2 ]−1

≤ 1. (4.8)

Integrating both sides of (4.8) with respect to t and letting θ = φ(s), we obtain

t ≥
1

CδC

(32π2

ν0
(1 − δ)

) 1
1+δ2

∫ φ(t)

φ(0)

(
M + θ

)−(1+δ2)
dθ. (4.9)

Taking the limit as t → T ∗ on both sides of (4.9) and combining with (4.2), we acquire

T ∗ ≥
1

CδC

(32π2

ν0
(1 − δ)

) 1
1+δ2

∫ +∞

φ(0)

(
M + θ

)−(1+δ2)
dθ

=
1

CδCδ2

(32π2

ν0
(1 − δ)

) 1
1+δ2

(
M +

∥u0∥
2

2

)−δ2

(4.10)

≥

(
M + l

2

)−δ2

CδCδ2

(32π2

ν0
(1 − δ)

) 1
1+δ2 .

The proof of Theorem 3 is complete.
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5. Conclusions

In this paper, we study the blow-up properties of solutions to the initial value problem for a fourth-
order parabolic equation with exponential terms. By using an improved concavity method, we establish
the upper bound for the blow-up time of the solution when the initial value u0 belongs to the unstable
set. Simultaneously, when the initial value u0 satisfies ∥∆u0∥

2 ≤ h and ∥u0∥
2 ≤ l, where h and l are

constants, we provide the lower bound for the blow-up time of the solution.
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