In this paper, we study, from both analytical and numerical points of view, a problem involving a mixture of two viscoelastic solids. An existence and uniqueness result is proved using the theory of linear semigroups. Exponential decay is shown for the one-dimensional case. Then, fully discrete approximations are introduced using the finite element method and the implicit Euler scheme. Some a priori error estimates are obtained and the linear convergence is derived under suitable regularity conditions. Finally, one- and two-dimensional numerical simulations are presented to demonstrate the convergence, the discrete energy decay and the behavior of the solution.
Citation: Noelia Bazarra, José R. Fernández, Ramón Quintanilla. On the mixtures of MGT viscoelastic solids[J]. Electronic Research Archive, 2022, 30(12): 4318-4340. doi: 10.3934/era.2022219
In this paper, we study, from both analytical and numerical points of view, a problem involving a mixture of two viscoelastic solids. An existence and uniqueness result is proved using the theory of linear semigroups. Exponential decay is shown for the one-dimensional case. Then, fully discrete approximations are introduced using the finite element method and the implicit Euler scheme. Some a priori error estimates are obtained and the linear convergence is derived under suitable regularity conditions. Finally, one- and two-dimensional numerical simulations are presented to demonstrate the convergence, the discrete energy decay and the behavior of the solution.
[1] | H. F. Tiersten, M. Jahanmir, A theory of composites modeled as inerpenetreting solid continua, Arch. Ration. Mech. Anal., 65 (1977), 153–192. https://doi.org/10.1007/BF00276554 doi: 10.1007/BF00276554 |
[2] | R. J. Atkin, R. E. Craine, Continuum theories of mixtures: basic theory and historical development, Q. J. Mech. Appl. Math., 29 (1976), 209–244. https://doi.org/10.1093/qjmam/29.2.209 doi: 10.1093/qjmam/29.2.209 |
[3] | R. M. Bowen, Theory of mixtures, in Continuum Physics III, Academic Press, New York, (1976), 689–722. |
[4] | A. Bedford, D. S. Drumheller, Theories of immiscible and structured materials, Int. J. Eng. Sci., 21 (1983), 863–960. https://doi.org/10.1016/0020-7225(83)90071-X doi: 10.1016/0020-7225(83)90071-X |
[5] | A. Bedford, M. Stern, A multi-continuum theory of composite elastic materials, Acta Mech., 14 (1972), 85–102. https://doi.org/10.1007/BF01184851 doi: 10.1007/BF01184851 |
[6] | A. Bedford, M. Stern, Towards a diffusing continuum theory of composite elastic materials, J. Appl. Mech., 38 (1971), 8–14. https://doi.org/10.1115/1.3408772 doi: 10.1115/1.3408772 |
[7] | R. M. Bowen, J. C. Wiese, Diffusion in mixtures of elastic materials, Int. J. Eng. Sci., 7 (1969), 689–722. https://doi.org/10.1016/0020-7225(69)90048-2 doi: 10.1016/0020-7225(69)90048-2 |
[8] | A. C. Eringen, D. J. Ingram, A continuum theory of chemically reacting media, Int. J. Eng. Sci., 3 (1965), 197–212. https://doi.org/10.1016/0020-7225(65)90044-3 doi: 10.1016/0020-7225(65)90044-3 |
[9] | A. E. Green, P. M. Naghdi, A dynamical theory of interacting continua, Int. J. Eng. Sci., 3 (1965), 231–241. https://doi.org/10.1016/0020-7225(65)90046-7 doi: 10.1016/0020-7225(65)90046-7 |
[10] | A. E. Green, P. M. Naghdi, A note on mixtures, Int. J. Eng. Sci., 6 (1968), 631–635. https://doi.org/10.1016/0020-7225(68)90064-5 doi: 10.1016/0020-7225(68)90064-5 |
[11] | J. D. Ingram, A. C. Eringen, A continuum theory of chemically reacting media Ⅱ, Int. J. Eng. Sci., 5 (1967), 289–322. https://doi.org/10.1016/0020-7225(67)90040-7 doi: 10.1016/0020-7225(67)90040-7 |
[12] | D. Ieșan, R. Quintanilla, On the theory of interacting continua with memory, J. Therm. Stresses, 25 (2002), 1161–1177. https://doi.org/10.1080/01495730290074586 doi: 10.1080/01495730290074586 |
[13] | P. D. Kelly, A reacting continuum, Int. J. Eng. Sci., 2 (1964), 129–153. https://doi.org/10.1016/0020-7225(64)90001-1 doi: 10.1016/0020-7225(64)90001-1 |
[14] | K. R. Rajagopal, L. Tao, Mechanics of mixtures, Ser. Adv. Math. Appl. Sci., 35 (1995). https://doi.org/10.1142/2197 doi: 10.1142/2197 |
[15] | X. Zhang, E. Zhai, Y. Wu, D. Sun, Theoretical and numerical analyses on Hydro–Thermal–Salt–Mechanical interaction of unsaturated salinized soil subjected to typical unidirectional freezing process, Int. J. Geomech., 21 (2021), 04021104. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002036 doi: 10.1061/(ASCE)GM.1943-5622.0002036 |
[16] | X. Zhang, Y. Wu, E. Zhai, P. Ye, Coupling analysis of the heat-water dynamics and frozen depth in a seasonally frozen zone, J. Hydrol., 593 (2021), 125603. https://doi.org/10.1016/j.jhydrol.2020.125603 doi: 10.1016/j.jhydrol.2020.125603 |
[17] | N. Bazarra, J. R. Fernández, R. Quintanilla, Analysis of a Moore-Gibson-Thompson thermoelasticity problem, J. Comput. Appl. Math., 382 (2021), 113058. https://doi.org/10.1016/j.cam.2020.113058 doi: 10.1016/j.cam.2020.113058 |
[18] | N. Bazarra, J. R. Fernández, R. Quintanilla, On the decay of the energy for radial solutions in Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 26 (2021), 1507–1514. https://doi.org/10.1177/1081286521994258 doi: 10.1177/1081286521994258 |
[19] | M. Conti, V. Pata, M. Pellicer, R. Quintanilla, A new approach to MGT-thermoviscoelasticity, Discrete Contin. Dyn. Syst., 41 (2021), 4645–4666. https://doi.org/10.3934/dcds.2021052 doi: 10.3934/dcds.2021052 |
[20] | M. Conti, V. Pata, R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptotic Anal., 120 (2020), 1–21. https://doi.org/10.3233/ASY-191576 doi: 10.3233/ASY-191576 |
[21] | J. R. Fernández, R. Quintanilla, Moore-Gibson-Thompson theory for thermoelastic dielectrics, Appl. Math. Mech., 42 (2021), 309–316. https://doi.org/10.1007/s10483-021-2703-9 doi: 10.1007/s10483-021-2703-9 |
[22] | K. Jangid, S. Mukhopadhyay, A domain of influence theorem for a natural stress-heat-flux problem in the Moore-Gibson-Thompson thermoelasticity theory, Acta Mech., 232 (2021), 177–187. https://doi.org/10.1007/s00707-020-02833-1 doi: 10.1007/s00707-020-02833-1 |
[23] | K. Jangid, S. Mukhopadhyay, A domain of influence theorem under MGT thermoelasticity theory, Math. Mech. Solids, 26 (2020), 285–295. https://doi.org/10.1177/1081286520946820 doi: 10.1177/1081286520946820 |
[24] | R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. https://doi.org/10.1177/1081286519862007 doi: 10.1177/1081286519862007 |
[25] | J. R. Fernández, R. Quintanilla, On a mixture of an MGT viscous material and an elastic solid, Acta Mech., 233 (2022), 291–297. https://doi.org/10.1007/s00707-021-03124-z doi: 10.1007/s00707-021-03124-z |
[26] | Z. Liu, S. Zheng, Semigroups Associated with Dissipative Systems, Chapman and Hall/CRC, Boca Raton, 1999. |
[27] | P. G. Ciarlet, Basic error estimates for elliptic problems, Handb. Numer. Anal., 2 (1993), 17–351. https://doi.org/10.1016/S1570-8659(05)80039-0 doi: 10.1016/S1570-8659(05)80039-0 |
[28] | M. Campo, J. R. Fernández, K. L. Kuttler, M. Shillor, J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Eng., 196 (2006), 476–488. https://doi.org/10.1016/j.cma.2006.05.006 doi: 10.1016/j.cma.2006.05.006 |