Because of the recent development in advanced sensors, data acquisition platforms, and data analysis methods, unmanned aerial vehicle (UAV) or drone-based remote sensing has gained significant attention from precision agriculture (PA) researchers. The massive amount of raw data collected from such sensing platforms demands large-scale data processing algorithms such as machine learning and deep learning methods. Therefore, it is timely to provide a detailed survey that assimilates, categorises, and compares the performance of various machine learning and deep learning methods for PA. This paper summarises and synthesises the recent works using a general pipeline of UAV-based remote sensing for precision agriculture research. We classify the different features extracted from UAV imagery for various agriculture applications, showing the importance of each feature for the performance of the crop model and demonstrating how the multiple feature fusion can improve the models' performance. In addition, we compare and contrast the performances of various machine learning and deep learning models for three important crop trait estimations: yield estimation, disease detection and crop classification. Furthermore, the recent trends in applications of UAVs for PA are briefly discussed in terms of their importance, and opportunities. Finally, we recite the potential challenges and suggest future avenues of research in this field.
Citation: Tej Bahadur Shahi, Cheng-Yuan Xu, Arjun Neupane, William Guo. Machine learning methods for precision agriculture with UAV imagery: a review[J]. Electronic Research Archive, 2022, 30(12): 4277-4317. doi: 10.3934/era.2022218
Because of the recent development in advanced sensors, data acquisition platforms, and data analysis methods, unmanned aerial vehicle (UAV) or drone-based remote sensing has gained significant attention from precision agriculture (PA) researchers. The massive amount of raw data collected from such sensing platforms demands large-scale data processing algorithms such as machine learning and deep learning methods. Therefore, it is timely to provide a detailed survey that assimilates, categorises, and compares the performance of various machine learning and deep learning methods for PA. This paper summarises and synthesises the recent works using a general pipeline of UAV-based remote sensing for precision agriculture research. We classify the different features extracted from UAV imagery for various agriculture applications, showing the importance of each feature for the performance of the crop model and demonstrating how the multiple feature fusion can improve the models' performance. In addition, we compare and contrast the performances of various machine learning and deep learning models for three important crop trait estimations: yield estimation, disease detection and crop classification. Furthermore, the recent trends in applications of UAVs for PA are briefly discussed in terms of their importance, and opportunities. Finally, we recite the potential challenges and suggest future avenues of research in this field.
[1] | N. Zhang, M. Wang, N. Wang, Precision agriculture—a worldwide overview, Comput. Electron. Agric., 36 (2002), 113–132. https://doi.org/10.1016/S0168-1699(02)00096-0 doi: 10.1016/S0168-1699(02)00096-0 |
[2] | K. H. Coble, A. K. Mishra, S. Ferrell, T. Griffin, Big data in agriculture: A challenge for the future, Appl. Econ. Perspect. Policy, 40 (2018), 79–96. https://doi.org/10.1093/aepp/ppx056 doi: 10.1093/aepp/ppx056 |
[3] | A.-K. Mahlein, Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping, Plant Dis., 100 (2016), 241–251. https://doi.org/10.1094/PDIS-03-15-0340-FE doi: 10.1094/PDIS-03-15-0340-FE |
[4] | J. C. Koh, M. Hayden, H. Daetwyler, S. Kant, Estimation of crop plant density at early mixed growth stages using UAV imagery, Plant Methods, 15 (2019), 1–9. https://doi.org/10.1186/s13007-019-0449-1 doi: 10.1186/s13007-019-0449-1 |
[5] | D. Sinwar, V. S. Dhaka, M. K. Sharma, G. Rani, AI-based yield prediction and smart irrigation. Internet of Things and Analytics for Agriculture, Volume 2: Springer. (2020), 155–180. https://doi.org/10.1007/978-981-15-0663-5_8 |
[6] | A. Al-Naji, A. B. Fakhri, S. K. Gharghan, J. Chahl, Soil color analysis based on a RGB camera and an artificial neural network towards smart irrigation: A pilot study, Heliyon, 7 (2021), e06078. https://doi.org/10.1016/j.heliyon.2021.e06078 doi: 10.1016/j.heliyon.2021.e06078 |
[7] | M. Kerkech, A. Hafiane, R. Canals, Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images, Comput. Electron. Agric., 155 (2018), 237–243. https://doi.org/10.1016/j.compag.2018.10.006 doi: 10.1016/j.compag.2018.10.006 |
[8] | C.-J. Chen, Y.-Y. Huang, Y.-S. Li, Y.-C. Chen, C.-Y. Chang, Y.-M. Huang, Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying, IEEE Access, 9 (2021), 21986–21997. https://doi.org/10.1109/ACCESS.2021.3056082 doi: 10.1109/ACCESS.2021.3056082 |
[9] | R. P. Sishodia, R. L. Ray, S. K. Singh, Applications of remote sensing in precision agriculture: A review, Remote Sens., 12 (2020), 3136. https://doi.org/10.3390/rs12193136 doi: 10.3390/rs12193136 |
[10] | C. Vallentin, K. Harfenmeister, S. Itzerott, B. Kleinschmit, C. Conrad, D. Spengler, Suitability of satellite remote sensing data for yield estimation in northeast Germany, Precis. Agric., 23 (2022), 52–82. https://doi.org/10.1007/s11119-021-09827-6 doi: 10.1007/s11119-021-09827-6 |
[11] | A. Khaliq, L. Comba, A. Biglia, D. R. Aimonino, M. Chiaberge, P. Gay, Comparison of satellite and UAV-based multispectral imagery for vineyard variability assessment, Remote Sens., 11 (2019), 436. https://doi.org/10.3390/rs11040436 doi: 10.3390/rs11040436 |
[12] | P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, I. Moscholios, A compilation of UAV applications for precision agriculture, Comput. Netw., 172 (2020), 107148. https://doi.org/10.1016/j.comnet.2020.107148 doi: 10.1016/j.comnet.2020.107148 |
[13] | I. Luna, A. Lobo, Mapping crop planting quality in sugarcane from UAV imagery: A pilot study in Nicaragua, Remote Sens., 8 (2016), 500. https://doi.org/10.3390/rs8060500 doi: 10.3390/rs8060500 |
[14] | M. D. Bah, A. Hafiane, R. Canals, Deep learning with unsupervised data labeling for weed detection in line crops in UAV images, Remote Sens., 10 (2018), 1690. https://doi.org/10.3390/rs10111690 doi: 10.3390/rs10111690 |
[15] | B. Mishra, A. Dahal, N. Luintel, T. B. Shahi, S. Panthi, S. Pariyar, et al., Methods in the spatial deep learning: current status and future direction, Spat. Inform. Res., 30 (2022), 215–232. https://doi.org/10.1007/s41324-021-00425-2 doi: 10.1007/s41324-021-00425-2 |
[16] | J. Geipel, J. Link, W. Claupein, Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system, Remote Sens., 6 (2014), 10335–10355. https://doi.org/10.3390/rs61110335 doi: 10.3390/rs61110335 |
[17] | X. Zhou, H. Zheng, X. Xu, J. He, X. Ge, X. Yao, et al., Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery, ISPRS J. Photogramm., 130 (2017), 246–255. https://doi.org/10.1016/j.isprsjprs.2017.05.003 doi: 10.1016/j.isprsjprs.2017.05.003 |
[18] | N. Yu, L. Li, N. Schmitz, L. F. Tian, J. A. Greenberg, B. W. Diers, Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform, Remote Sens. Environ., 187 (2016), 91–101. https://doi.org/10.1016/j.rse.2016.10.005 doi: 10.1016/j.rse.2016.10.005 |
[19] | F. Gnädinger, U. Schmidhalter, Digital counts of maize plants by unmanned aerial vehicles (UAVs), Remote sens., 9 (2017), 544. https://doi.org/10.3390/rs9060544 doi: 10.3390/rs9060544 |
[20] | S. Nebiker, N. Lack, M. Abächerli, S. Läderach, Light-weight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases, Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci., 41 (2016). https://doi.org/10.5194/isprsarchives-XLI-B1-963-2016 doi: 10.5194/isprsarchives-XLI-B1-963-2016 |
[21] | M. Maimaitijiang, V. Sagan, P. Sidike, S. Hartling, F. Esposito, F. B. Fritschi, Soybean yield prediction from UAV using multimodal data fusion and deep learning, Remote Sens. Environ., 237 (2020), 111599. https://doi.org/10.1016/j.rse.2019.111599 doi: 10.1016/j.rse.2019.111599 |
[22] | P. Nevavuori, N. Narra, P. Linna, T. Lipping, Crop yield prediction using multitemporal UAV data and spatio-temporal deep learning models, Remote Sens., 12 (2020), 4000. https://doi.org/10.3390/rs12234000 doi: 10.3390/rs12234000 |
[23] | J. Abdulridha, Y. Ampatzidis, J. Qureshi, P. Roberts, Laboratory and UAV-based identification and classification of tomato yellow leaf curl, bacterial spot, and target spot diseases in tomato utilizing hyperspectral imaging and machine learning, Remote Sens., 12 (2020), 2732. https://doi.org/10.3390/rs12172732 doi: 10.3390/rs12172732 |
[24] | M. Bhandari, A. M. Ibrahim, Q. Xue, J. Jung, A. Chang, J. C. Rudd, et al., Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV), Comput. Electron. Agric., 176 (2020), 105665. https://doi.org/10.1016/j.compag.2020.105665 doi: 10.1016/j.compag.2020.105665 |
[25] | W. H. Maes, K. Steppe, Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture, Trends Plant Sci., 24 (2019), 152–164. https://doi.org/10.1016/j.tplants.2018.11.007 doi: 10.1016/j.tplants.2018.11.007 |
[26] | A. Chlingaryan, S. Sukkarieh, B. Whelan, Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review, Comput. Electron. Agric., 151 (2018), 61–69. https://doi.org/10.1016/j.compag.2018.05.012 doi: 10.1016/j.compag.2018.05.012 |
[27] | D. C. Tsouros, S. Bibi, P. G. Sarigiannidis, A review on UAV-based applications for precision agriculture, Information, 10 (2019), 349. https://doi.org/10.3390/info10110349 doi: 10.3390/info10110349 |
[28] | P. Velusamy, S. Rajendran, R. K. Mahendran, S. Naseer, M. Shafiq, J.-G. Choi, Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges, Energies, 15 (2021), 217. https://doi.org/10.3390/en15010217 doi: 10.3390/en15010217 |
[29] | A. Kamilaris, F. X. Prenafeta-Boldú, Deep learning in agriculture: A survey, Comput. Electron. Agric., 147 (2018), 70–90. https://doi.org/10.1016/j.compag.2018.02.016 doi: 10.1016/j.compag.2018.02.016 |
[30] | D. J. Mulla, Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps, Biosyst. Eng., 114 (2013), 358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009 doi: 10.1016/j.biosystemseng.2012.08.009 |
[31] | A. Mancini, E. Frontoni, P. Zingaretti. Satellite and uav data for precision agriculture applications; 2019. IEEE. pp. 491–497. https://doi.org/10.1109/ICUAS.2019.8797930 |
[32] | U. S. Panday, N. Shrestha, S. Maharjan, A. K. Pratihast, K. L. Shrestha, J. Aryal, Correlating the Plant Height of Wheat with Above-Ground Biomass and Crop Yield Using Drone Imagery and Crop Surface Model, A Case Study from Nepal, Drones, 4 (2020), 28. https://doi.org/10.3390/drones4030028 doi: 10.3390/drones4030028 |
[33] | I. H. Beloev, A review on current and emerging application possibilities for unmanned aerial vehicles, Acta Technol. Agric., 19 (2016), 70–76. https://doi.org/10.1515/ata-2016-0015 doi: 10.1515/ata-2016-0015 |
[34] | R. Gebbers, V. I. Adamchuk, Precision agriculture and food security, Science, 327 (2010), 828–831. https://doi.org/10.1126/science.1183899 doi: 10.1126/science.1183899 |
[35] | J. L. Awange, J. B. Kyalo Kiema, Fundamentals of remote sensing. Environmental Geoinformatis. Springer, Berlin, Heidelberg, 2013,111–118. https://doi.org/10.1007/978-3-642-34085-7_7 |
[36] | T. Chen, W. Yang, H. Zhang, B. Zhu, R. Zeng, X. Wang, et al., Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data, Comput. Electron. Agric., 177 (2020), 105708. https://doi.org/10.1016/j.compag.2020.105708 doi: 10.1016/j.compag.2020.105708 |
[37] | C. Albornoz, L. F. Giraldo, Trajectory design for efficient crop irrigation with a UAV, 2017 IEEE 3rd Colombian conference on Automatic Control (CCAC), IEEE, 2017. pp. 1–6. https://doi.org/10.1109/CCAC.2017.8276401 |
[38] | V. Gonzalez-Dugo, P. Zarco-Tejada, E. Nicolás, P. A. Nortes, J. Alarcón, D. S. Intrigliolo, et al., Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard, Precis. Agric., 14 (2013), 660–678. https://doi.org/10.1007/s11119-013-9322-9 doi: 10.1007/s11119-013-9322-9 |
[39] | Y. Huang, K. N. Reddy, R. S. Fletcher, D. Pennington, UAV low-altitude remote sensing for precision weed management, Weed Technol., 32 (2018), 2–6. https://doi.org/10.1017/wet.2017.89 doi: 10.1017/wet.2017.89 |
[40] | C. Ballester, J. Brinkhoff, W. C. Quayle, J. Hornbuckle, Monitoring the effects of water stress in cotton using the green red vegetation index and red edge ratio, Remote Sens., 11 (2019), 873. https://doi.org/10.3390/rs11070873 doi: 10.3390/rs11070873 |
[41] | L. Zhang, H. Zhang, Y. Niu, W. Han, Mapping maize water stress based on UAV multispectral remote sensing, Remote Sens., 11 (2019), 605. https://doi.org/10.3390/rs11060605 doi: 10.3390/rs11060605 |
[42] | E. R. Hunt, D. A. Horneck, C. B. Spinelli, R. W. Turner, A. E. Bruce, D. J. Gadler, et al., Monitoring nitrogen status of potatoes using small unmanned aerial vehicles, Precis. Agric., 19 (2018), 314–333. https://doi.org/10.1007/s11119-017-9518-5 doi: 10.1007/s11119-017-9518-5 |
[43] | J. Kim, S. Kim, C. Ju, H. I. Son, Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications, IEEE Access, 7 (2019), 105100–105115. https://doi.org/10.1109/ACCESS.2019.2932119 doi: 10.1109/ACCESS.2019.2932119 |
[44] | R. Akhter, S. A. Sofi, Precision agriculture using IoT data analytics and machine learning, J. King Saud University-Comput. Inform. Sci., (2021). https://doi.org/10.1016/j.jksuci.2021.05.013 doi: 10.1016/j.jksuci.2021.05.013 |
[45] | L. Pádua, J. Vanko, J. Hruška, T. Adão, J. J. Sousa, E. Peres, et al., UAS, sensors, and data processing in agroforestry: A review towards practical applications, Int. J. Remote Sens., 38 (2017), 2349–2391. https://doi.org/10.1080/01431161.2017.1297548 doi: 10.1080/01431161.2017.1297548 |
[46] | C. Paucar, L. Morales, K. Pinto, M. Sánchez, R. Rodríguez, M. Gutierrez, et al., Use of drones for surveillance and reconnaissance of military areas; 2018. Springer. pp. 119–132. https://doi.org/10.1007/978-3-319-78605-6_10 |
[47] | I. Wahab, O. Hall, M. Jirström, Remote sensing of yields: Application of uav imagery-derived ndvi for estimating maize vigor and yields in complex farming systems in sub-saharan africa, Drones, 2 (2018), 28. https://doi.org/10.3390/drones2030028 doi: 10.3390/drones2030028 |
[48] | M. Zaman-Allah, O. Vergara, J. Araus, A. Tarekegne, C. Magorokosho, P. Zarco-Tejada, et al., Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize, Plant Methods, 11 (2015), 1–10. https://doi.org/10.1186/s13007-015-0078-2 doi: 10.1186/s13007-015-0078-2 |
[49] | A. C. Watts, V. G. Ambrosia, E. A. Hinkley, Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use, Remote Sens., 4 (2012), 1671–1692. https://doi.org/10.3390/rs4061671 doi: 10.3390/rs4061671 |
[50] | S. Guan, K. Fukami, H. Matsunaka, M. Okami, R. Tanaka, H. Nakano, et al., Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs, Remote Sens., 11 (2019), 112. https://doi.org/10.3390/rs11020112 doi: 10.3390/rs11020112 |
[51] | X. Zhang, L. Han, Y. Dong, Y. Shi, W. Huang, L. Han, et al., A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images, Remote Sens., 11 (2019), 1554. https://doi.org/10.3390/rs11131554 doi: 10.3390/rs11131554 |
[52] | G. Oré, M. S. Alcântara, J. A. Góes, L. P. Oliveira, J. Yepes, B. Teruel, et al., Crop growth monitoring with drone-borne DInSAR, Remote Sens., 12 (2020), 615. https://doi.org/10.3390/rs12040615 doi: 10.3390/rs12040615 |
[53] | A. Matese, R. Baraldi, A. Berton, C. Cesaraccio, S. F. Di Gennaro, P. Duce, et al., Estimation of water stress in grapevines using proximal and remote sensing methods, Remote Sens., 10 (2018), 114. https://doi.org/10.3390/rs10010114 doi: 10.3390/rs10010114 |
[54] | A. P. M. Ramos, L. P. Osco, D. E. G. Furuya, W. N. Gonçalves, D. C. Santana, L. P. R. Teodoro, et al., A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices, Comput. Electron. Agric., 178 (2020), 105791. https://doi.org/10.1016/j.compag.2020.105791 doi: 10.1016/j.compag.2020.105791 |
[55] | L. Wan, H. Cen, J. Zhu, J. Zhang, Y. Zhu, D. Sun, et al., Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer–a case study of small farmlands in the South of China, Agric. For. Meteorol., 291 (2020), 108096. https://doi.org/10.1016/j.agrformet.2020.108096 doi: 10.1016/j.agrformet.2020.108096 |
[56] | A. Matese, S. F. Di Gennaro, Beyond the traditional NDVI index as a key factor to mainstream the use of UAV in precision viticulture, Sci. Rep., 11 (2021), 1–13. https://doi.org/10.1038/s41598-021-81652-3 doi: 10.1038/s41598-021-81652-3 |
[57] | K. Sumesh, S. Ninsawat, J. Som-ard, Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle, Comput. Electron. Agric., 180 (2021), 105903. https://doi.org/10.1016/j.compag.2020.105903 doi: 10.1016/j.compag.2020.105903 |
[58] | C. Stanton, M. J. Starek, N. Elliott, M. Brewer, M. M. Maeda, T. Chu, Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment, J. Appl. Remote Sens., 11 (2017), 026035. https://doi.org/10.1117/1.JRS.11.026035 doi: 10.1117/1.JRS.11.026035 |
[59] | P. L. Raeva, J. Šedina, A. Dlesk, Monitoring of crop fields using multispectral and thermal imagery from UAV, Eur. J. Remote Sens., 52 (2019), 192–201. https://doi.org/10.1080/22797254.2018.1527661 doi: 10.1080/22797254.2018.1527661 |
[60] | L. G. T. Crusiol, M. R. Nanni, R. H. Furlanetto, R. N. R. Sibaldelli, E. Cezar, L. M. Mertz-Henning, et al., UAV-based thermal imaging in the assessment of water status of soybean plants, Int. J. Remote Sens., 41 (2020), 3243–3265. https://doi.org/10.1080/01431161.2019.1673914 doi: 10.1080/01431161.2019.1673914 |
[61] | I. Pölönen, H. Saari, J. Kaivosoja, E. Honkavaara, L. Pesonen, Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV, Remote Sensing for Agriculture, Ecosystems, and Hydrology XV. SPIE, 8887 (2013), 141–149. https://doi.org/10.1117/12.2028624 |
[62] | C. N. Vong, L. S. Conway, J. Zhou, N. R. Kitchen, K. A. Sudduth, Early corn stand count of different cropping systems using UAV-imagery and deep learning, Comput. Electron. Agric., 186 (2021), 106214. https://doi.org/10.1016/j.compag.2021.106214 doi: 10.1016/j.compag.2021.106214 |
[63] | U. Lussem, A. Bolten, M. Gnyp, J. Jasper, G. Bareth, Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in grassland, Int. Arch. Photogramm Remote Sens. Spatial Inf. Sci., 42 (2018), 1215–1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018 doi: 10.5194/isprs-archives-XLII-3-1215-2018 |
[64] | R. V. Rossel, R. McGlynn, A. McBratney, Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy, Geoderma, 137 (2006), 70–82. https://doi.org/10.1016/j.geoderma.2006.07.004 doi: 10.1016/j.geoderma.2006.07.004 |
[65] | Y. Guo, H. Wang, Z. Wu, S. Wang, H. Sun, J. Senthilnath, et al., Modified Red Blue Vegetation Index for Chlorophyll Estimation and Yield Prediction of Maize from Visible Images Captured by UAV, Sensors, 20 (2020), 5055. https://doi.org/10.3390/s20185055 doi: 10.3390/s20185055 |
[66] | H. García-Martínez, H. Flores-Magdaleno, R. Ascencio-Hernández, A. Khalil-Gardezi, L. Tijerina-Chávez, O. R. Mancilla-Villa, et al., Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB images acquired with unmanned aerial vehicles, Agriculture, 10 (2020), 277. https://doi.org/10.3390/agriculture10070277 doi: 10.3390/agriculture10070277 |
[67] | T. Adão, J. Hruška, L. Pádua, J. Bessa, E. Peres, R. Morais, et al., Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry, Remote Sens., 9 (2017), 1110. https://doi.org/10.3390/rs9111110 doi: 10.3390/rs9111110 |
[68] | R. Calderón, J. A. Navas-Cortés, C. Lucena, P. J. Zarco-Tejada, High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices, Remote Sens. Environ., 139 (2013), 231–245. https://doi.org/10.1016/j.rse.2013.07.031 doi: 10.1016/j.rse.2013.07.031 |
[69] | J. Su, C. Liu, M. Coombes, X. Hu, C. Wang, X. Xu, et al., Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery, Comput. Electron. Agric., 155 (2018), 157–166. https://doi.org/10.1016/j.compag.2018.10.017 doi: 10.1016/j.compag.2018.10.017 |
[70] | J. Kurihara, T. Ishida, Y. Takahashi, Unmanned Aerial Vehicle (UAV)-based hyperspectral imaging system for precision agriculture and forest management, In Unmanned Aerial Vehicle: Applications in Agriculture and Environment, Springer. (2020), 25–38. https://doi.org/10.1007/978-3-030-27157-2_3 |
[71] | J. Bian, Z. Zhang, J. Chen, H. Chen, C. Cui, X. Li, et al., Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery, Remonte Sens., 11 (2019), 267. https://doi.org/10.3390/rs11030267 doi: 10.3390/rs11030267 |
[72] | J. Martínez, G. Egea, J. Agüera, M. Pérez-Ruiz, A cost-effective canopy temperature measurement system for precision agriculture: A case study on sugar beet, Precis. Agric., 18 (2017), 95–110. https://doi.org/10.1007/s11119-016-9470-9 doi: 10.1007/s11119-016-9470-9 |
[73] | L. Zhang, Y. Niu, H. Zhang, W. Han, G. Li, J. Tang, et al., Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring, Front. Plant Sci., (2019), 1270. https://doi.org/10.3389/fpls.2019.01270 doi: 10.3389/fpls.2019.01270 |
[74] | S. Idso, R. Jackson, P. Pinter Jr, R. Reginato, J. Hatfield, Normalizing the stress-degree-day parameter for environmental variability, Agric. meteorol., 24 (1981), 45–55. https://doi.org/10.1016/0002-1571(81)90032-7 doi: 10.1016/0002-1571(81)90032-7 |
[75] | L. Zhou, X. Gu, S. Cheng, G. Yang, M. Shu, Q. Sun, Analysis of plant height changes of lodged maize using UAV-LiDAR data, Agric., 10 (2020), 146. https://doi.org/10.3390/agriculture10050146 doi: 10.3390/agriculture10050146 |
[76] | Y. Jia, Z. Su, Q. Zhang, Y. Zhang, Y. Gu, Z. Chen, Research on UAV remote sensing image mosaic method based on SIFT, Int. J. Signal Process., Image Process. Pattern Recognition, 8 (2015), 365–374. https://doi.org/10.14257/ijsip.2015.8.11.33 doi: 10.14257/ijsip.2015.8.11.33 |
[77] | Y. Jeong, J. Yu, L. Wang, H. Shin, S.-M. Koh, G. Park, Cost-effective reflectance calibration method for small UAV images, Int. J. Remote Sens., 39 (2018), 7225–7250. https://doi.org/10.1080/01431161.2018.1516307 doi: 10.1080/01431161.2018.1516307 |
[78] | Y. Ji, Z. Chen, Q. Cheng, R. Liu, M. Li, X. Yan, et al., Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.), Plant Methods, 18 (2022), 1–13. https://doi.org/10.1186/s13007-022-00861-7 doi: 10.1186/s13007-022-00861-7 |
[79] | M. Awais, W. Li, M. Cheema, S. Hussain, A. Shaheen, B. Aslam, et al., Assessment of optimal flying height and timing using high-resolution unmanned aerial vehicle images in precision agriculture, Int. J. Environ. Sci. Technol., 19 (2022), 2703–2720. https://doi.org/10.1007/s13762-021-03195-4 doi: 10.1007/s13762-021-03195-4 |
[80] | J. Gilliot, J. Michelin, D. Hadjard, S. Houot, An accurate method for predicting spatial variability of maize yield from UAV-based plant height estimation: A tool for monitoring agronomic field experiments, Precis. Agric., 22 (2021), 897–921. https://doi.org/10.1007/s11119-020-09764-w doi: 10.1007/s11119-020-09764-w |
[81] | U. R. Mogili, B. Deepak, Review on application of drone systems in precision agriculture, Procedia Comput. Sci., 133 (2018), 502–509. https://doi.org/10.1016/j.procs.2018.07.063 doi: 10.1016/j.procs.2018.07.063 |
[82] | C. Zerbato, D. L. Rosalen, C. E. A. Furlani, J. Deghaid, M. A. Voltarelli, Agronomic characteristics associated with the normalized difference vegetation index (NDVI) in the peanut crop, Aust. J. Crop. Sci., 10 (2016), 758–764. https://doi.org/10.21475/ajcs.2016.10.05.p7167 doi: 10.21475/ajcs.2016.10.05.p7167 |
[83] | A. Ashapure, S. Oh, T. G. Marconi, A. Chang, J. Jung, J. Landivar, et al., Unmanned aerial system based tomato yield estimation using machine learning; 2019. International Society for Optics and Photonics. pp. 110080O. https://doi.org/10.1117/12.2519129 |
[84] | A. Michez, P. Lejeune, S. Bauwens, A. A. L. Herinaina, Y. Blaise, E. Castro Muñoz, et al., Mapping and monitoring of biomass and grazing in pasture with an unmanned aerial system, Remote Sens., 11 (2019), 473. https://doi.org/10.3390/rs11050473 doi: 10.3390/rs11050473 |
[85] | R. M. Haralick, K. Shanmugam, I. H. Dinstein, Textural features for image classification, IEEE Trans. Syst., Man, Cybern, (1973), 610–621. https://doi.org/10.1109/TSMC.1973.4309314 doi: 10.1109/TSMC.1973.4309314 |
[86] | Y. Guo, Y. H. Fu, S. Chen, C. R. Bryant, X. Li, J. Senthilnath, et al., Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images, Int. J. Appl. Earth Obs. Geoinf., 102 (2021), 102435. https://doi.org/10.1016/j.jag.2021.102435 doi: 10.1016/j.jag.2021.102435 |
[87] | T. B. Shahi, A. Shrestha, A. Neupane, W. Guo, Stock price forecasting with deep learning: A comparative study, Mathematics, 8 (2020), 1441. https://doi.org/10.3390/math8091441 doi: 10.3390/math8091441 |
[88] | C. Sitaula, A. Basnet, A. Mainali, T. B. Shahi, Deep learning-based methods for sentiment analysis on Nepali covid-19-related tweets, Comput. Intell. Neurosci., 2021 (2021). https://doi.org/10.1155/2021/2158184 doi: 10.1155/2021/2158184 |
[89] | T. B. Shahi, C. Sitaula, A. Neupane, W. Guo, Fruit classification using attention-based MobileNetV2 for industrial applications, Plos one, 17 (2022), e0264586. https://doi.org/10.1371/journal.pone.0264586 doi: 10.1371/journal.pone.0264586 |
[90] | S. Subba, N. Paudel, T. B. Shahi, Nepali text document classification using deep neural network, Tribhuvan University J., 33 (2019), 11–22. https://doi.org/10.3126/tuj.v33i1.28677 doi: 10.3126/tuj.v33i1.28677 |
[91] | B. Whelan, J. Taylor, Precision agriculture for grain production systems, CSIRO publishing, 2013. https://doi.org/10.1071/9780643107489 |
[92] | B. Neupane, T. Horanont, N. D. Hung, Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV), PloS one, 14 (2019), e0223906. https://doi.org/10.1371/journal.pone.0223906 doi: 10.1371/journal.pone.0223906 |
[93] | K. Osorio, A. Puerto, C. Pedraza, D. Jamaica, L. Rodríguez, A deep learning approach for weed detection in lettuce crops using multispectral images, AgriEngineering, 2 (2020), 471–488. https://doi.org/10.3390/agriengineering2030032 doi: 10.3390/agriengineering2030032 |
[94] | T. Kattenborn, J. Eichel, F. E. Fassnacht, Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery, Sci. Rep., 9 (2019), 1–9. https://doi.org/10.1038/s41598-018-37186-2 doi: 10.1038/s41598-018-37186-2 |
[95] | S. Shafiee, L. M. Lied, I. Burud, J. A. Dieseth, M. Alsheikh, M. Lillemo, Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery, Comput. Electron. Agric., 183 (2021), 106036. https://doi.org/10.1016/j.compag.2021.106036 doi: 10.1016/j.compag.2021.106036 |
[96] | W. Xu, P. Chen, Y. Zhan, S. Chen, L. Zhang, Y. Lan, Cotton yield estimation model based on machine learning using time series UAV remote sensing data, Int. J. Appl. Earth Obs. Geoinf., 104 (2021), 102511. https://doi.org/10.1016/j.jag.2021.102511 doi: 10.1016/j.jag.2021.102511 |
[97] | J. Zhou, J. Zhou, H. Ye, M. L. Ali, P. Chen, H. T. Nguyen, Yield estimation of soybean breeding lines under drought stress using unmanned aerial vehicle-based imagery and convolutional neural network, Biosyst. Eng., 204 (2021), 90–103. https://doi.org/10.1016/j.biosystemseng.2021.01.017 doi: 10.1016/j.biosystemseng.2021.01.017 |
[98] | Q. Yang, L. Shi, J. Han, Y. Zha, P. Zhu, Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images, Field Crops Res., 235 (2019), 142–153. https://doi.org/10.1016/j.fcr.2019.02.022 doi: 10.1016/j.fcr.2019.02.022 |
[99] | H. Escalante, S. Rodríguez-Sánchez, M. Jiménez-Lizárraga, A. Morales-Reyes, J. De La Calleja, R. Vazquez, Barley yield and fertilization analysis from UAV imagery: a deep learning approach, Int. J. Remote Sens., 40 (2019), 2493–2516. https://doi.org/10.1080/01431161.2019.1577571 doi: 10.1080/01431161.2019.1577571 |
[100] | P. Nevavuori, N. Narra, T. Lipping, Crop yield prediction with deep convolutional neural networks, Comput. Electron. Agric., 163 (2019), 104859. https://doi.org/10.1016/j.compag.2019.104859 doi: 10.1016/j.compag.2019.104859 |
[101] | N. Suzuki, R. M. Rivero, V. Shulaev, E. Blumwald, R. Mittler, Abiotic and biotic stress combinations, New Phytol., 203 (2014), 32–43. https://doi.org/10.1111/nph.12797 doi: 10.1111/nph.12797 |
[102] | K. James, C. J. Nichol, T. Wade, D. Cowley, S. Gibson Poole, A. Gray, et al., Thermal and multispectral remote sensing for the detection and analysis of archaeologically induced crop stress at a UK site, Drones, 4 (2020), 61. https://doi.org/10.3390/drones4040061 doi: 10.3390/drones4040061 |
[103] | S. Delalieux, P. J. Zarco-Tejada, L. Tits, M. Á. J. Bello, D. S. Intrigliolo, B. Somers, Unmixing-based fusion of hyperspatial and hyperspectral airborne imagery for early detection of vegetation stress, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7 (2014), 2571–2582. |
[104] | J. Bellvert, P. J. Zarco-Tejada, J. Girona, E. Fereres, Mapping crop water stress index in a 'Pinot-noir'vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle, Precis. Agric., 15 (2014), 361–376. https://doi.org/10.1007/s11119-013-9334-5 doi: 10.1007/s11119-013-9334-5 |
[105] | R. Sugiura, S. Tsuda, S. Tamiya, A. Itoh, K. Nishiwaki, N. Murakami, et al., Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle, Biosyst. Eng., 148 (2016), 1–10. https://doi.org/10.1016/j.biosystemseng.2016.04.010 doi: 10.1016/j.biosystemseng.2016.04.010 |
[106] | A. Patrick, S. Pelham, A. Culbreath, C. C. Holbrook, I. J. De Godoy, C. Li, High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging, IEEE Instrum. Meas. Mage., 20 (2017), 4–12. https://doi.org/10.1109/MIM.2017.7951684 doi: 10.1109/MIM.2017.7951684 |
[107] | M. Balota, J. Oakes. UAV remote sensing for phenotyping drought tolerance in peanuts; 2017. SPIE. pp. 81–87. https://doi.org/10.1117/12.2262496 |
[108] | D. Gómez-Candón, J. Torres-Sanchez, S. Labbé, A. Jolivot, S. Martinez, J. L. Regnard, Water stress assessment at tree scale: high-resolution thermal UAV imagery acquisition and processing, ActaHortic, (2017), 159–166. https://doi.org/10.17660/ActaHortic.2017.1150.23 doi: 10.17660/ActaHortic.2017.1150.23 |
[109] | L. N. Lacerda, J. L. Snider, Y. Cohen, V. Liakos, S. Gobbo, G. Vellidis, Using UAV-based thermal imagery to detect crop water status variability in cotton, Smart Agric. Technol., 2 (2022), 100029. https://doi.org/10.1016/j.atech.2021.100029 doi: 10.1016/j.atech.2021.100029 |
[110] | H. Ma, W. Huang, Y. Dong, L. Liu, A. Guo, Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium Head Blight, Remote Sens., 13 (2021), 3024. https://doi.org/10.3390/rs13153024 doi: 10.3390/rs13153024 |
[111] | D. Bohnenkamp, J. Behmann, A.-K. Mahlein, In-field detection of yellow rust in wheat on the ground canopy and UAV scale, Remote Sens., 11 (2019), 2495. https://doi.org/10.3390/rs11212495 doi: 10.3390/rs11212495 |
[112] | H. Wu, T. Wiesner‐Hanks, E. L. Stewart, C. DeChant, N. Kaczmar, M. A. Gore, et al., Autonomous detection of plant disease symptoms directly from aerial imagery, Plant Phenome J., 2 (2019), 1–9. https://doi.org/10.2135/tppj2019.03.0006 doi: 10.2135/tppj2019.03.0006 |
[113] | D. Freeman, S. Gupta, D. H. Smith, J. M. Maja, J. Robbins, J. S. Owen, et al., Watson on the farm: Using cloud-based artificial intelligence to identify early indicators of water stress, Remote Sens., 11 (2019), 2645. https://doi.org/10.3390/rs11222645 doi: 10.3390/rs11222645 |
[114] | M.-D. Yang, H.-H. Tseng, Y.-C. Hsu, H. P. Tsai, Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date UAV visible images, Remote Sens., 12 (2020), 633. https://doi.org/10.3390/rs12040633 doi: 10.3390/rs12040633 |
[115] | Z. Song, Z. Zhang, S. Yang, D. Ding, J. Ning, Identifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imaging, Comput. Electron. Agric., 179 (2020), 105812. https://doi.org/10.1016/j.compag.2020.105812 doi: 10.1016/j.compag.2020.105812 |
[116] | L. E. C. La Rosa, M. Zortea, B. Gemignani, D. A. B. Oliveira, R. Q. Feitosa. Fcrn-based multi-task learning for automatic citrus tree detection from uav images, 2020 IEEE Latin AMerican GRSS & ISPRS Remonte Sensing Conference (LAGIRS). pp. 403–408. https://doi.org/10.1109/LAGIRS48042.2020.9165654 |
[117] | M. Fawakherji, C. Potena, D. D. Bloisi, M. Imperoli, A. Pretto, D. Nardi, Uav image based crop and weed distribution estimation on embedded gpu boards, Int. Confer. Comput. Aanl. Image. Pattern. Springer, Cham. 2019,100–108. https://doi.org/10.1007/978-3-030-29930-9_10 |
[118] | G.-H. Kwak, N.-W. Park, Impact of texture information on crop classification with machine learning and UAV images, Appl. Sci., 9 (2019), 643. https://doi.org/10.3390/app9040643 doi: 10.3390/app9040643 |
[119] | F. Trujillano, A. Flores, C. Saito, M. Balcazar, D. Racoceanu, Corn classification using Deep Learning with UAV imagery. An operational proof of concept, 2018 IEEE 1st Colombian conference on applications in computational intelligence (ColCACI), IEEE, 2018, pp. 1–4. https://doi.org/10.1109/ColCACI.2018.8484845 |
[120] | B. T. Kitano, C. C. Mendes, A. R. Geus, H. C. Oliveira, J. R. Souza, Corn plant counting using deep learning and UAV images, IEEE Geosci. Remote Sens. Lett., (2019). https://doi.org/10.1109/LGRS.2019.2930549 doi: 10.1109/LGRS.2019.2930549 |
[121] | R. Chew, J. Rineer, R. Beach, M. O'Neil, N. Ujeneza, D. Lapidus, et al., Deep neural networks and transfer learning for food crop identification in UAV Images, Drones, 4 (2020), 7. https://doi.org/10.3390/drones4010007 doi: 10.3390/drones4010007 |
[122] | M. Aria, C. Cuccurullo, bibliometrix: An R-tool for comprehensive science mapping analysis, J. Informetr., 11 (2017), 959–975. https://doi.org/10.1016/j.joi.2017.08.007 doi: 10.1016/j.joi.2017.08.007 |