Research article

Adaptive sliding mode fault-tolerant attitude control for flexible satellites based on T-S fuzzy disturbance modeling


  • Received: 23 February 2023 Revised: 19 May 2023 Accepted: 23 May 2023 Published: 30 May 2023
  • This paper investigates the fault tolerance problem of flexible satellites subject to actuator faults and multiple disturbances. An adaptive sliding mode fault tolerant control (ASMFTC) approach based on Takagi-Sugeno (T-S) fuzzy disturbance observer (TSFDO) is presented for attitude control system (ACS) under loss of actuator effectiveness, environmental disturbance torque and elastic modal generated by flexible appendages. Compared with the traditional disturbance observer based control (DOBC) methods, the T-S fuzzy technology is applied to estimate the unknown nonlinear elastic modal. Then, the energy bounded disturbance is eliminated by designing an adaptive sliding mode controller. The proposed ASMFTC design can guarantee the sliding surface to approach zero. Finally, the effectiveness of the control method proposed in this paper is further verified by comparative simulation.

    Citation: Bin Hang, Beibei Su, Weiwei Deng. Adaptive sliding mode fault-tolerant attitude control for flexible satellites based on T-S fuzzy disturbance modeling[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12700-12717. doi: 10.3934/mbe.2023566

    Related Papers:

  • This paper investigates the fault tolerance problem of flexible satellites subject to actuator faults and multiple disturbances. An adaptive sliding mode fault tolerant control (ASMFTC) approach based on Takagi-Sugeno (T-S) fuzzy disturbance observer (TSFDO) is presented for attitude control system (ACS) under loss of actuator effectiveness, environmental disturbance torque and elastic modal generated by flexible appendages. Compared with the traditional disturbance observer based control (DOBC) methods, the T-S fuzzy technology is applied to estimate the unknown nonlinear elastic modal. Then, the energy bounded disturbance is eliminated by designing an adaptive sliding mode controller. The proposed ASMFTC design can guarantee the sliding surface to approach zero. Finally, the effectiveness of the control method proposed in this paper is further verified by comparative simulation.



    加载中


    [1] S. Cao, Y. Zhao, Anti-disturbance fault-tolerant attitude control for satellites subject to multiple disturbances and actuator saturation, Nonlinear Dyn., 89 (2017), 2657–2667. https://doi.org/10.1007/s11071-017-3614-y doi: 10.1007/s11071-017-3614-y
    [2] M. H. Kaplan, Modern Spacecraft Dynamics and Control, Courier Dover Publications, 2020.
    [3] H. Lee, Y. Kim, Fault-tolerant control scheme for satellite attitude control system, IET Control Theory Appl., 4 (2010), 1436–1450. https://doi.org/10.1049/iet-cta.2009.0159 doi: 10.1049/iet-cta.2009.0159
    [4] M. Azadi, S. Fazelzadeh, M. Eghtesad, E. Azadi, Vibration suppression and adaptive-robust control of a smart flexible satellite with three axes maneuvering, Acta Astronaut., 69 (2011), 307–322. https://doi.org/10.1016/j.actaastro.2011.04.001 doi: 10.1016/j.actaastro.2011.04.001
    [5] B. Xiao, S. Yin, L. Wu, A structure simple controller for satellite attitude tracking maneuver, IEEE Trans. Ind. Electron., 64 (2016), 1436–1446. https://doi.org/10.1109/TIE.2016.2611576 doi: 10.1109/TIE.2016.2611576
    [6] S. Varma, K. Kumar, Fault tolerant satellite attitude control using solar radiation pressure based on nonlinear adaptive sliding mode, Acta Astronaut., 66 (2010), 486–500. https://doi.org/10.1016/j.actaastro.2009.07.027 doi: 10.1016/j.actaastro.2009.07.027
    [7] L. Guo, X. Y. Wen, Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems, Trans. Inst. Meas. Control, 33 (2011), 942–956. https://doi.org/10.1177/0142331210361555 doi: 10.1177/0142331210361555
    [8] A. M. Zou, K. D. Kumar, Adaptive attitude control of spacecraft without velocity measurements using chebyshev neural network, Acta Astronaut., 66 (2010), 769–779. https://doi.org/10.1016/j.actaastro.2009.08.020 doi: 10.1016/j.actaastro.2009.08.020
    [9] W. H. Chen, D. J. Ballance, P. J. Gawthrop, J. O'Reilly, A nonlinear disturbance observer for robotic manipulators, IEEE Trans. Ind. Electron., 47 (2000), 932–938. https://doi.org/10.1109/41.857974 doi: 10.1109/41.857974
    [10] Z. J. Yang, H. Tsubakihara, S. Kanae, K. Wada, C. Y. Su, A novel robust nonlinear motion controller with disturbance observer, in 2006 IEEE Conference on Computer Aided Control System Design, (2006), 320–325. https://doi.org/10.1109/TCST.2007.903091
    [11] J. Yang, Z. Ding, W. H. Chen, S. Li, Output-based disturbance rejection control for non-linear uncertain systems with unknown frequency disturbances using an observer backstepping approach, IET Control Theory Appl., 10 (2016), 1052–1060. https://doi.org/10.1049/iet-cta.2015.1160 doi: 10.1049/iet-cta.2015.1160
    [12] C. Zhao, Y. Huang, ADRC based input disturbance rejection for minimum-phase plants with unknown orders and/or uncertain relative degrees, J. Syst. Sci. Complexity, 25 (2012), 625–640. https://doi.org/10.1007/s11424-012-1022-4 doi: 10.1007/s11424-012-1022-4
    [13] J. Yang, Z. Ding, S. Li, C. Zhang, Continuous finite-time output regulation of nonlinear systems with unmatched time-varying disturbances, IEEE Control Syst. Lett., 2 (2017), 97–102. https://doi.org/10.1109/LCSYS.2017.2755363 doi: 10.1109/LCSYS.2017.2755363
    [14] W. H. Chen, J. Yang, L. Guo, S. Li, Disturbance-observer-based control and related methods—an overview, IEEE Trans. Ind. Electron., 63 (2015), 1083–1095. https://doi.org/10.1109/TIE.2015.2478397 doi: 10.1109/TIE.2015.2478397
    [15] S. Cao, L. Guo, Z. Ding, Event-triggered anti-disturbance attitude control for rigid spacecrafts with multiple disturbances, Int. J. Robust Nonlinear Control, 31 (2021), 344–357. https://doi.org/10.1002/rnc.5276 doi: 10.1002/rnc.5276
    [16] H. Li, Y. Gao, L. Wu, H. K. Lam, Fault detection for ts fuzzy time-delay systems: Delta operator and input-output methods, IEEE Trans. Cybern., 45 (2014), 229–241. https://doi.org/10.1109/TCYB.2014.2323994 doi: 10.1109/TCYB.2014.2323994
    [17] Y. Yi, X. X. Fan, T. P. Zhang, Anti-disturbance tracking control for systems with nonlinear disturbances using T-S fuzzy modeling, Neurocomputing, 171 (2016), 1027–1037. https://doi.org/10.1016/j.neucom.2015.07.039 doi: 10.1016/j.neucom.2015.07.039
    [18] M. I. Ghiasi, M. A. Golkar, A. Hajizadeh, Lyapunov based-distributed fuzzy-sliding mode control for building integrated-DC microgrid with plug-in electric vehicle, IEEE Access, 5 (2017), 7746–7752. https://doi.org/10.1109/ACCESS.2017.2689807 doi: 10.1109/ACCESS.2017.2689807
    [19] Q. Hou, J. Dong, Cooperative fault-tolerant output regulation of linear heterogeneous multiagent systems via an adaptive dynamic event-triggered mechanism, IEEE Trans. Cybern., 2022 (2022). https://doi.org/10.1109/TCYB.2022.3204119 doi: 10.1109/TCYB.2022.3204119
    [20] S. Yin, B. Xiao, S. X. Ding, D. Zhou, A review on recent development of spacecraft attitude fault tolerant control system, IEEE Trans. Ind. Electron., 63 (2016), 3311–3320. https://doi.org/10.1109/TIE.2016.2530789 doi: 10.1109/TIE.2016.2530789
    [21] R. Sun, Y. Han, Y. Wang, Design of generalized fault diagnosis observer and active adaptive fault tolerant controller for aircraft control system, Math. Biosci. Eng., 19 (2022), 5591–5609. https://doi.org/10.3934/mbe.2022262 doi: 10.3934/mbe.2022262
    [22] T. Li, G. Li, Q. Zhao, Adaptive fault-tolerant stochastic shape control with application to particle distribution control, IEEE Trans. Syst. Man Cybern. Syst., 45 (2015), 1592–1604. https://doi.org/10.1109/TSMC.2015.2433896 doi: 10.1109/TSMC.2015.2433896
    [23] Godard, K. D. Kumar, Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques, J. Guid. Contro Dyn., 33 (2010), 969–984. https://doi.org/10.2514/1.38580 doi: 10.2514/1.38580
    [24] J. Dong, G. H. Yang, Reliable state feedback control of T-S fuzzy systems with sensor faults, IEEE Trans. Fuzzy Syst., 23 (2014), 421–433. https://doi.org/10.1109/TFUZZ.2014.2315298 doi: 10.1109/TFUZZ.2014.2315298
    [25] S. Cao, B. Hang, Adaptive fault tolerant attitude control of flexible satellites based on takagi-sugeno fuzzy disturbance modeling, Trans. Inst. Meas. Control, 42 (2020), 1712–1723. https://doi.org/10.1177/0142331219895108 doi: 10.1177/0142331219895108
    [26] Q. Hu, X. Huo, B. Xiao, Z. Zhang, Robust finite-time control for spacecraft attitude stabilization under actuator fault, Proc. Inst. Mech. Eng. Part I, 226 (2012), 416–428. https://doi.org/10.1177/0959651811399542 doi: 10.1177/0959651811399542
    [27] S. Cao, Y. Zhao, J. Qiao, Adaptive fault tolerant attitude control based on a disturbance observer for satellites with multiple disturbances, Trans. Inst. Meas. Control, 38 (2016), 722–731. https://doi.org/10.1177/0142331215616180 doi: 10.1177/0142331215616180
    [28] H. Yang, V. Cocquempot, B. Jiang, Robust fault tolerant tracking control with application to hybrid nonlinear systems, IET Control Theory Appl., 3 (2009), 211–224. https://doi.org/10.1049/iet-cta:20080015 doi: 10.1049/iet-cta:20080015
    [29] B. Xiao, Q. Hu, Y. Zhang, Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation, IEEE Trans. Control Syst. Technol., 20 (2011), 1605–1612. https://doi.org/10.1109/TCST.2011.2169796 doi: 10.1109/TCST.2011.2169796
    [30] Z. Yang, D. Zhang, X. Sun, X. Ye, Adaptive exponential sliding mode control for a bearingless induction motor based on a disturbance observer, IEEE Access, 6 (2018), 35425–35434. https://doi.org/10.1109/ACCESS.2018.2851590 doi: 10.1109/ACCESS.2018.2851590
    [31] H. Liu, L. Guo, Y. Zhang, An anti-disturbance pd control scheme for attitude control and stabilization of flexible spacecrafts, Nonlinear Dyn., 67 (2012), 2081–2088. https://doi.org/10.1007/s11071-011-0130-3 doi: 10.1007/s11071-011-0130-3
    [32] L. Zhou, Z. Che, C. Yang, Disturbance observer-based integral sliding mode control for singularly perturbed systems with mismatched disturbances, IEEE Access, 6 (2018), 9854–9861. https://doi.org/10.1109/ACCESS.2018.2808477 doi: 10.1109/ACCESS.2018.2808477
    [33] X. Yao, L. Guo, Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica, 49 (2013), 2538–2545. https://doi.org/10.1016/j.automatica.2013.05.002 doi: 10.1016/j.automatica.2013.05.002
    [34] H. Wang, D. Ye, G. H. Yang, Actuator fault diagnosis for uncertain T-S fuzzy systems with local nonlinear models, Nonlinear Dyn., 76 (2014), 1977–1988. https://doi.org/10.1007/s11071-014-1262-z doi: 10.1007/s11071-014-1262-z
    [35] M. J. Leamy, A. K. Noor, T. M. Wasfy, Dynamic simulation of a tethered satellite system using finite elements and fuzzy sets, Comput. Methods Appl. Mech. Eng., 190 (2001), 4847–4870. https://doi.org/10.1016/S0045-7825(00)00352-2 doi: 10.1016/S0045-7825(00)00352-2
    [36] Y. Shtessel, C. Edwards, L. Fridman, A. Levant, Sliding Mode Control and Observation, Springer, 2014. https://doi.org/10.1007/978-0-8176-4893-0
    [37] J. Fei, H. Wang, Y. Fang, Novel neural network fractional-order sliding-mode control with application to active power filter, IEEE Trans. Syst. Man Cybern. Syst., 52 (2021), 3508–3518. https://doi.org/10.1109/TSMC.2021.3071360 doi: 10.1109/TSMC.2021.3071360
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(943) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog