Research article Special Issues

Robust finite-time stability of nonlinear systems involving hybrid impulses with application to sliding-mode control

  • Academic editor: Shengqiang Liu
  • Received: 17 October 2022 Revised: 30 November 2022 Accepted: 14 December 2022 Published: 21 December 2022
  • This paper is concerned with the robust finite-time stability and stabilization of impulsive systems subject to hybrid disturbances that consists of external disturbances and hybrid impulses with time-varying jump maps. First, the global finite-time stability and local finite-time stability of a scalar impulsive system are ensured by the analysis of cumulative effect of hybrid impulses. Then, asymptotic stabilization and finite-time stabilization of second-order system subject to hybrid disturbances are achieved by linear sliding-mode control and non-singular terminal sliding-mode control. It shows that the stable systems under control are robust to external disturbances and hybrid impulses with non-destabilizing cumulative effect. If the hybrid impulses have destabilizing cumulative effect, the systems are also capable of absorbing the hybrid impulsive disturbances by the designed sliding-mode control strategies. Finally, the effectiveness of theoretical results is verified by numerical simulation and the tracking control of linear motor.

    Citation: Jian Meng, Bin Zhang, Tengda Wei, Xinyi He, Xiaodi Li. Robust finite-time stability of nonlinear systems involving hybrid impulses with application to sliding-mode control[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 4198-4218. doi: 10.3934/mbe.2023196

    Related Papers:

  • This paper is concerned with the robust finite-time stability and stabilization of impulsive systems subject to hybrid disturbances that consists of external disturbances and hybrid impulses with time-varying jump maps. First, the global finite-time stability and local finite-time stability of a scalar impulsive system are ensured by the analysis of cumulative effect of hybrid impulses. Then, asymptotic stabilization and finite-time stabilization of second-order system subject to hybrid disturbances are achieved by linear sliding-mode control and non-singular terminal sliding-mode control. It shows that the stable systems under control are robust to external disturbances and hybrid impulses with non-destabilizing cumulative effect. If the hybrid impulses have destabilizing cumulative effect, the systems are also capable of absorbing the hybrid impulsive disturbances by the designed sliding-mode control strategies. Finally, the effectiveness of theoretical results is verified by numerical simulation and the tracking control of linear motor.



    加载中


    [1] V. Utkin, Variable structure systems with sliding modes, IEEE Trans. Autom. Control, 22 (1977), 212–222. https://doi.org/10.1109/TAC.1977.1101446 doi: 10.1109/TAC.1977.1101446
    [2] Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica, 38 (2002), 2159–2167. https://doi.org/10.1016/S0005-1098(02)00147-4 doi: 10.1016/S0005-1098(02)00147-4
    [3] B. Jiang, H. R. Karimi, Y. Kao, C. Gao, Takagi–Sugeno model-based sliding mode observer design for finite-time synthesis of semi-markovian jump systems, IEEE Trans. Syst. Man, Cybern., Syst., 49 (2019), 1505–1515.
    [4] B. A. Martínez-Treviño, A. El Aroudi, A. Cid-Pastor, G. Garcia, L. Martinez-Salamero, Synthesis of constant power loads using switching converters under sliding-mode control, IEEE Trans. Circuits Syst. I Reg. Papers, 68 (2021), 524–535.
    [5] J. Xu, Y. Niu, C.-C. Lim, P. Shi, Memory output-feedback integral sliding mode control for furuta pendulum systems, IEEE Trans. Circuits Syst. I Reg. Papers, 67 (2020), 2042–2052. https://doi.org/10.1109/TCSI.2020.2970090 doi: 10.1109/TCSI.2020.2970090
    [6] M. Ghasemi, S. G. Nersesov, Finite-time coordination in multiagent systems using sliding mode control approach, Automatica, 50 (2014), 1209–1216. https://doi.org/10.1016/j.automatica.2014.02.019 doi: 10.1016/j.automatica.2014.02.019
    [7] S. Mobayen, K. A. Alattas, W. Assawinchaichote, Adaptive continuous barrier function terminal sliding mode control technique for disturbed robotic manipulator, IEEE Trans. Circuits Syst. I Reg. Papers, 68 (2021), 4403–4412. https://doi.org/10.1109/TCSI.2021.3101736 doi: 10.1109/TCSI.2021.3101736
    [8] H. Razmi, S. Afshinfar, Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV, Aerosp. Sci. Technol., 91 (2019), 12–27.
    [9] P. Shi, M. Liu, L. Zhang, Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements, IEEE Trans. Ind. Electron., 62 (2015), 5910–5918.
    [10] Y. Shtessel, C. Edwards, L. Fridman, A. Levant, Sliding Mode Control and Observation, Birkhauser, Springer, New York, 2014.
    [11] G. Sun, L. Wu, Z. Kuang, Z. Ma, J. Liu, Practical tracking control of linear motor via fractional-order sliding mode, Automatica, 94 (2018), 221–235. https://doi.org/10.1016/j.automatica.2018.02.011 doi: 10.1016/j.automatica.2018.02.011
    [12] M. V. Basin, P. Yu, Y. B. Shtessel, Hypersonic missile adaptive sliding mode control using finite-and fixed-time observers, IEEE Trans. Ind. Electron., 65 (2018), 930–941. https://doi.org/10.1109/TIE.2017.2701776 doi: 10.1109/TIE.2017.2701776
    [13] Z. Zhao, C. Li, J. Yang, S. Li, Output feedback continuous terminal sliding mode guidance law for missile-target interception with autopilot dynamics, Aerosp. Sci. Technol., 86 (2019), 256–267. https://doi.org/10.1016/j.ast.2019.01.012 doi: 10.1016/j.ast.2019.01.012
    [14] S. Yu, X. Yu, B. Shirinzadeh, Z. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41 (2005), 1957–1964. https://doi.org/10.1016/j.automatica.2005.07.001 doi: 10.1016/j.automatica.2005.07.001
    [15] H. Hou, X. Yu, L. Xu, K. Rsetam, Z. Cao, Finite-time continuous terminal sliding mode control of servo motor systems, IEEE Trans. Ind. Electron., 67 (2020), 5647–5656. https://doi.org/10.1109/TIE.2019.2931517 doi: 10.1109/TIE.2019.2931517
    [16] J. Yang, S. Li, J. Su, X. Yu, Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances, Automatica, 49 (2013), 2287–2291. https://doi.org/10.1016/j.automatica.2013.03.026 doi: 10.1016/j.automatica.2013.03.026
    [17] M. L. Corradini, A. Cristofaro, Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees, Automatica, 95 (2018), 561–565. https://doi.org/10.1016/j.automatica.2018.06.032 doi: 10.1016/j.automatica.2018.06.032
    [18] E. Moulay, V. Léchappé, E. Bernuau, F. Plestan, Robust fixed-time stability: Application to sliding-mode control, IEEE Trans. Autom. Control, 67 (2022), 1061–1066. https://doi.org/10.1109/TAC.2021.3069667 doi: 10.1109/TAC.2021.3069667
    [19] Z. Zuo, Non-singular fixed-time terminal sliding mode control of non-linear systems, IET Control Theory Appl., 9 (2015), 545–552. https://doi.org/10.1049/iet-cta.2014.0202 doi: 10.1049/iet-cta.2014.0202
    [20] T. Shirai, Y. Nagamatsu, H. Suzuki, S. Nozawa, K. Okada, M. Inaba, Design and evaluation of torque based bipedal walking control system that prevent fall over by impulsive disturbance, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2018), 739–746. https://doi.org/10.1109/IROS.2018.8594334
    [21] W.-H. Chen, X. Deng, W. X. Zheng, Sliding-mode control for linear uncertain systems with impulse effects via switching gains, IEEE Trans. Autom. Control, 67 (2022), 2044–2051. https://doi.org/10.1109/TAC.2021.3073099 doi: 10.1109/TAC.2021.3073099
    [22] X. He, X. Li, S. Song, Nonsingular terminal sliding-mode control of second-order systems subject to hybrid disturbances, IEEE Trans. Circuits Syst. II Express Briefs, 69 (2022), 5019–5023. https://doi.org/10.1109/TCSII.2022.3192030 doi: 10.1109/TCSII.2022.3192030
    [23] X. Li, Y. Zhao, Sliding mode control for linear impulsive systems with matched disturbances, IEEE Trans. Autom. Control, 67 (2022), 6203–6210. https://doi.org/10.1109/TAC.2021.3129735 doi: 10.1109/TAC.2021.3129735
    [24] T. Wei, P. Duan, X. Li, Input-to-state stability of time-delay systems with hybrid impulses and continuous subdynamics based on vector Lyapunov function, IEEE Trans. Syst. Man, Cybern., Syst., 2022 (2022), forthcoming. http://dx.doi.org/10.1109/TSMC.2022.3200710 doi: 10.1109/TSMC.2022.3200710
    [25] S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal., Hybrid Syst., 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004
    [26] T. Wei, X. Li, V. Stojanovic, Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays, Nonlinear Dyn., 103 (2021), 1733–1755. https://doi.org/10.1007/s11071-021-06208-6 doi: 10.1007/s11071-021-06208-6
    [27] T. Wei, X. Li, J. Cao, Stability of delayed reaction-diffusion neural-network models with hybrid impulses via vector Lyapunov function, IEEE Trans. Neural Netw. Learn. Syst., 2022 (2022), forthcoming. http://dx.doi.org/10.1109/TNNLS.2022.3143884 doi: 10.1109/TNNLS.2022.3143884
    [28] W. Allegretto, D. Papini, M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Network, 21 (2010), 1110–1125.
    [29] X. Li, D. W. C. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
    [30] S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358
    [31] S. G. Nersesov, W. M. Haddad, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Anal., Hybrid Syst., 2 (2008), 832–845. https://doi.org/10.1016/j.nahs.2007.12.001 doi: 10.1016/j.nahs.2007.12.001
    [32] X. Yang, X. Li, J. Lu, Z. Cheng, Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control, IEEE Trans. Cybern., 50 (2020), 4043–4052. https://doi.org/10.1109/TCYB.2019.2938217 doi: 10.1109/TCYB.2019.2938217
    [33] X. Yang, J. Lu, D. W. C. Ho, Q. Song, Synchronization of uncertain hybrid switching and impulsive complex networks, Appl. Math. Model., 59 (2018), 379–392. https://doi.org/10.1016/j.apm.2018.01.046 doi: 10.1016/j.apm.2018.01.046
    [34] H. Hu, B. Gao, L. Xu, Finite-time and fixed-time attractiveness for nonlinear impulsive systems, IEEE Trans. Autom. Control, 67 (2022), 5586–5593. https://doi.org/10.1109/TAC.2021.3123237 doi: 10.1109/TAC.2021.3123237
    [35] S. Dashkovskiy, V. Slynko, Stability conditions for impulsive dynamical systems, Math. Control Signals Syst., 34 (2022), 95–128. https://doi.org/10.1007/s00498-021-00305-y doi: 10.1007/s00498-021-00305-y
    [36] S. Dashkovskiy, V. Slynko, Dwell-time stability conditions for infinite dimensional impulsive systems, Automatica, 147 (2023), 110695. https://doi.org/10.1016/j.automatica.2022.110695 doi: 10.1016/j.automatica.2022.110695
    [37] B. Jiang, H. R. Karimi, S. Yang, C. Gao, Y. Kao, Observer-based adaptive sliding mode control for nonlinear stochastic Markov jump systems via T–S fuzzy modeling: Applications to robot arm model, IEEE Trans. Ind. Electron., 68 (2021), 466–477.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1436) PDF downloads(84) Cited by(3)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog