Research article Special Issues

Sliding-mode controller synthesis of robotic manipulator based on a new modified reaching law

  • Received: 29 January 2022 Revised: 13 March 2022 Accepted: 05 April 2022 Published: 22 April 2022
  • In this study, an adaptive modified reaching law-based switch controller design was developed for robotic manipulator systems using the disturbance observer (DO) approach. Firstly, a standard DO is employed to estimate the unknown disturbances of the plant, from which the control signal could be compensated. Then, an adaptive modified reaching law is established to dynamically adapt the switching gain of the sliding mode robust term and further guarantee the finite-time arrival of the established sliding surface. Additionally, the convergence of the error system is analyzed via the Lyapunov method. At last, the feasibility and effectiveness of the proposed control scheme are verified by using a two-joint robotic manipulator model. The simulation results show that the developed controller can achieve rapid tracking, reduce system chattering and improve the robustness of the plant. The main innovations of the work are as follows. 1) A new adaptive reaching law is proposed; it can reduce chattering effectively, and it has a fast convergence speed. 2) Regarding the nonlinear robotic manipulator model, a novel adaptive sliding-mode controller was synthesized based on the DO to estimate the unknown disturbance and ensure effective tracking of the desired trajectory.

    Citation: Xinyu Shao, Zhen Liu, Baoping Jiang. Sliding-mode controller synthesis of robotic manipulator based on a new modified reaching law[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 6362-6378. doi: 10.3934/mbe.2022298

    Related Papers:

  • In this study, an adaptive modified reaching law-based switch controller design was developed for robotic manipulator systems using the disturbance observer (DO) approach. Firstly, a standard DO is employed to estimate the unknown disturbances of the plant, from which the control signal could be compensated. Then, an adaptive modified reaching law is established to dynamically adapt the switching gain of the sliding mode robust term and further guarantee the finite-time arrival of the established sliding surface. Additionally, the convergence of the error system is analyzed via the Lyapunov method. At last, the feasibility and effectiveness of the proposed control scheme are verified by using a two-joint robotic manipulator model. The simulation results show that the developed controller can achieve rapid tracking, reduce system chattering and improve the robustness of the plant. The main innovations of the work are as follows. 1) A new adaptive reaching law is proposed; it can reduce chattering effectively, and it has a fast convergence speed. 2) Regarding the nonlinear robotic manipulator model, a novel adaptive sliding-mode controller was synthesized based on the DO to estimate the unknown disturbance and ensure effective tracking of the desired trajectory.



    加载中


    [1] C. Yang, Y. Jiang, W. He, J. Na, Z. Li, B. Xu, Adaptive parameter estimation and control design for robot manipulators with finite-time convergence, IEEE Trans. Ind. Electron., 65 (2018), 8112-8123. https://doi.org/10.1109/TIE.2018.2803773 doi: 10.1109/TIE.2018.2803773
    [2] H. Wang, Adaptive control of robot manipulators with uncertain kinematics and dynamics, IEEE Trans. Autom. Control, 62 (2017), 948-954. https://doi.org/10.1109/TAC.2016.2575827 doi: 10.1109/TAC.2016.2575827
    [3] Y. Hu, J. Li, Y. Chen, Q. Wang, C. Chi, H. Zhang, et al., Design and control of a highly redundant rigid-flexible coupling robot to assist the COVID-19 oropharyngeal-swab sampling. IEEE Robot. Autom. Lett., 7 (2022), 1856-1863. https://doi.org/10.1109/lra.2021.3062336 doi: 10.1109/lra.2021.3062336
    [4] Y. Hu, H. Su, J. Fu, H. R. Karimi, G. Ferrigno, E. D. Momi, et al., Nonlinear model predictive control for mobile medical robot using neural optimization, IEEE Trans. Ind. Electron., 68 (2021), 12636-12645. https://10.1109/TIE.2020.3044776
    [5] S. Mobayen, F. Tchier, L. Ragoub, Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control, Int. J. Syst. Sci., 48 (2017), 1990-2002. https://doi.org/10.1080/00207721.2017.1299812 doi: 10.1080/00207721.2017.1299812
    [6] A. Abooee, M. M. Khorasani, M. Haeri, Finite time control of robotic manipulators with position output feedback, Int. J. Robust Nonlinear Control, 27 (2017), 2982-2999. https://doi.org/10.1002/rnc.3721 doi: 10.1002/rnc.3721
    [7] R. J. Wai, R. Muthusamy, Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 274-287. https://doi.org/10.1109/TNNLS.2012.2228230 doi: 10.1109/TNNLS.2012.2228230
    [8] Z. Zhao, J. Yang, S. Li, Z. Zhang, L. Guo, Finite-time super-twisting sliding mode control for Mars entry trajectory tracking, J. Franklin Inst., 352 (2015), 5226-5248. https://doi.org/10.1016/j.jfranklin.2015.08.022 doi: 10.1016/j.jfranklin.2015.08.022
    [9] V. I. Utkin, A. S. Poznyak, Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method, Automatica, 49 (2013), 39-47. https://doi.org/10.1016/j.automatica.2012.09.008 doi: 10.1016/j.automatica.2012.09.008
    [10] Z. Liu, H. R. Karimi, J. Yu, Passivity-based robust sliding mode synthesis for uncertain delayed stochastic systems via state observer, Automatica, 111 (2020), 108596. https://doi.org/10.1016/j.automatica.2019.108596 doi: 10.1016/j.automatica.2019.108596
    [11] Z. Liu, J. Yu, H. R. Karimi, Adaptive H∞ sliding mode control of uncertain neutral-type stochastic systems based on state observer, Int. J. Robust Nonlinear Control, 30 (2020), 1141-1155. https://doi.org/10.1002/rnc.4817 doi: 10.1002/rnc.4817
    [12] T. Gonzalez, J. A. Moreno, L. Fridman, Variable gain super-twisting sliding mode control, IEEE Trans. Autom. Control, 57 (2012), 2100-2105. https://doi.org/10.1109/TAC.2011.2179878 doi: 10.1109/TAC.2011.2179878
    [13] X. L. Tang, Z. Liu, Sliding mode observer-based adaptive control of uncertain singular systems with unknown time-varying delay and nonlinear input, ISA Trans., (2021), in press. https://doi.org/10.1016/j.isatra.2021.09.011
    [14] B. Jiang, C. C. Gao, Decentralized adaptive sliding mode control of large-scale semi-Markovian jump interconnected systems with dead-zone input, IEEE Trans. Autom. Control, (2021), in press. https://doi.org/10.1109/TAC.2021.3065658
    [15] H. R. Karimi, A sliding mode approach to H synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties, J. Franklin Inst., 349 (2012), 1480-1496. https://doi.org/10.1016/j.jfranklin.2011.09.015 doi: 10.1016/j.jfranklin.2011.09.015
    [16] H. Liu, X. Tian, G. Wang, T. Zhang, Finite-time H-infinity control for high-precision tracking in robotic manipulators using backstepping control, IEEE Trans. Ind. Electron., 63 (2016), 5501-5513. https://doi.org/10.1109/TIE.2016.2583998 doi: 10.1109/TIE.2016.2583998
    [17] S. Li, Z. Shao, Y. Guan, A dynamic neural network approach for efficient control of manipulators, IEEE Trans. Syst., Man, Cybern.: Syst., 49 (2017), 1-10. https://doi.org/10.1109/TSMC.2017.2690460 doi: 10.1109/TSMC.2017.2690460
    [18] A. Mohammadi, M. Tavakoli, H. J. Marquez, F. Hashemzadeh, Nonlinear disturbance observer design for robotic manipulators, Control Eng. Pract., 21 (2013), 253-267. https://doi.org/10.1016/j.conengprac.2012.10.008 doi: 10.1016/j.conengprac.2012.10.008
    [19] S. Yu, X. Yu, B. Shirinzadeh, Z. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41 (2005), 1957-1964. https://doi.org/10.1016/j.automatica.2005.07.001 doi: 10.1016/j.automatica.2005.07.001
    [20] J. Baek, M. Jin, S. Han, A new adaptive sliding-mode control scheme for application to robot manipulators, IEEE Trans. Ind. Electron., 63 (2016), 3628-3637. https://doi.org/10.1109/TIE.2016.2522386 doi: 10.1109/TIE.2016.2522386
    [21] H. Liu, J. Sun, J. Nie, L. Zou, Observer-based adaptive second-order non-singular fast terminal sliding mode controller for robotic manipulators, Asian J. Control, 23 (2020), 1845-1854. https://doi.org/10.1002/asjc.2369 doi: 10.1002/asjc.2369
    [22] W. Gao, J. C. Hung, Variable structure control of nonlinear systems: A new approach, IEEE Trans. Ind. Electron., 40 (1993), 45-55. https://doi.org/10.1109/41.184820 doi: 10.1109/41.184820
    [23] A. Wang, X. Jia, S. Dong, A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor, IEEE Trans. Magn., 49 (2013), 2409-2412. https://doi.org/10.1109/TMAG.2013.2240666 doi: 10.1109/TMAG.2013.2240666
    [24] C. J. Fallaha, M. Saad, H. Y. Kanaan, K. Al-Haddad, Sliding-mode robot control with exponential reaching law, IEEE Trans. Ind. Electron., 58 (2011), 600-610. https://doi.org/10.1109/TIE.2010.2045995 doi: 10.1109/TIE.2010.2045995
    [25] Z. Zhao, H. Gu, J. Zhang, G. Ding, Terminal sliding mode control based on super-twisting algorithm, J. Syst. Eng. Electron., 28 (2017), 145-150. https://doi.org/10.21629/JSEE.2017.01.16 doi: 10.21629/JSEE.2017.01.16
    [26] W. H. Chen, D. J. Ballance, P. J. Gawthrop, J. O'Reilly, A nonlinear disturbance observer for robotic manipulators, IEEE Trans. Ind. Electron., 47 (2000), 932-938. https://doi.org/10.1109/41.857974 doi: 10.1109/41.857974
    [27] S. Rajendran, D. Jena, Variable speed wind turbine for maximum power capture using adaptive fuzzy integral sliding mode control, J. Mod. Power Syst. Clean Energy, 2 (2014), 114-125. https://doi.org/10.1007/s40565-014-0061-3 doi: 10.1007/s40565-014-0061-3
    [28] N. M. Moawad, W. M. Elawady, A. Sarhan, Development of an adaptive radial basis function neural network estimator-based continuous sliding mode control for uncertain nonlinear systems, ISA Trans., 87 (2018), 200-216. https://doi.org/10.1016/j.isatra.2018.11.021 doi: 10.1016/j.isatra.2018.11.021
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2149) PDF downloads(161) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog