[1]
|
Y. Zhang, E. Yao, R. Zhang, H. Xu, Analysis of elderly people's travel behaviours during the morning peak hours in the context of the free bus programme in Beijing, China, J. Transp. Geogr., 76 (2019), 191–199. https://doi.org/10.1016/j.jtrangeo.2019.04.002 doi: 10.1016/j.jtrangeo.2019.04.002
|
[2]
|
P. Thaithatkul, S. Chalermpong, W. Laosinwattana, H. Kato, Mobility, activities, and happiness in old age: case of the elderly in Bangkok, Case Stud. Transp. Policy, 10 (2022), 1462–1471. https://doi.org/10.1016/j.cstp.2022.05.010 doi: 10.1016/j.cstp.2022.05.010
|
[3]
|
A. Jones, A. Goodman, H. Roberts, R. Steinbach, J. Green, Entitlement to concessionary public transport and wellbeing: a qualitative study of young people and older citizens in London, UK, Social Sci. Med., 91 (2013), 202–209. https://doi.org/10.1016/j.socscimed.2012.11.040 doi: 10.1016/j.socscimed.2012.11.040
|
[4]
|
F. Shao, Y. Sui, X. Yu, R. Sun, Spatio-temporal travel patterns of elderly people–A comparative study based on buses usage in Qingdao, China, J. Transp. Geogr., 76 (2019), 178–190. https://doi.org/10.1016/j.jtrangeo.2019.04.001 doi: 10.1016/j.jtrangeo.2019.04.001
|
[5]
|
J. R. Hjorthol, L. Levin, A. Sirén, Mobility in different generations of older persons: the development of daily travel in different cohorts in Denmark, Norway and Sweden, J. Transp. Geogr., 18 (2010), 624–633. https://doi.org/10.1016/j.jtrangeo.2010.03.011 doi: 10.1016/j.jtrangeo.2010.03.011
|
[6]
|
J. Kim, D. J. Schmöcker, T. Nakamura, N. Uno, T. Iwamoto, Integrated impacts of public transport travel and travel satisfaction on quality of life of older people, Transp. Res. Part A: Policy Pract., 138 (2020), 15–27. https://doi.org/10.1016/j.tra.2020.04.019 doi: 10.1016/j.tra.2020.04.019
|
[7]
|
X. Dong, Addressing health and well-being of U.S. Chinese older adults through community-based participatory research: introduction to the PINE study, AIMS Med. Sci., 2 (2015), 261–270. https://doi.org/10.3934/medsci.2015.3.261 doi: 10.3934/medsci.2015.3.261
|
[8]
|
C. Dillon, F. E. Taragano, Activity and lifestyle factors in the elderly: their relationship with degenerative diseases and depression, AIMS Med. Sci., 3 (2016), 213–216. https://doi.org/10.3934/medsci.2016.2.213 doi: 10.3934/medsci.2016.2.213
|
[9]
|
S. Zhang, P. Jing, D. Yuan, C. Yang, On parents' choice of the school travel mode during the COVID-19 pandemic, Math. Biosci. Eng., 19 (2022), 9412−9436. https://doi.org/10.3934/mbe.2022438 doi: 10.3934/mbe.2022438
|
[10]
|
X. Hu, J. Wang, L. Wang, Understanding the travel behavior of elderly people in the developing country: a case study of Changchun, China, Procedia - Social Behav. Sci., 96 (2013), 873–880. https://doi.org/10.1016/j.sbspro.2013.08.099 doi: 10.1016/j.sbspro.2013.08.099
|
[11]
|
J. Mak, L. Carlile, S. Dai, Impact of population aging on Japanese international travel to 2025, J. Travel Res., 44 (2005), 151–162. https://doi.org/10.1177/0047287505278993 doi: 10.1177/0047287505278993
|
[12]
|
M. Wei, T. Liu, B. Sun, Optimal routing design of feeder transit with stop selection using aggregated cell phone data and open source GIS tool, IEEE Trans. Intell. Transp. Syst., 22 (2021), 2452–2463. https://doi.org/10.1109/TITS.2020.3042014 doi: 10.1109/TITS.2020.3042014
|
[13]
|
M. Wei, B. Jing, J. Yin, Y. Zang, A green demand-responsive airport shuttle service problem with time-varying speeds, J. Adv. Transp., 2020 (2020), 1–13. https://doi.org/10.1155/2020/9853164 doi: 10.1155/2020/9853164
|
[14]
|
M. Wei, T. Liu, B. Sun, B. Jing, Optimal integrated model for feeder transit route design and frequency-setting problem with stop selection, J. Adv. Transp., 2020 (2020), 1–12. https://doi.org/10.1155/2020/6517248 doi: 10.1155/2020/6517248
|
[15]
|
Y. Hou, Polycentric urban form and non-work travel in Singapore: a focus on seniors, Transp. Res. D Transp. Environ., 73 (2019), 245–275. https://doi.org/10.1016/j.trd.2019.07.003 doi: 10.1016/j.trd.2019.07.003
|
[16]
|
J. Tang, J. Liang, F. Liu, J. Hao, Y. Wang, Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network, Transp. Res. Part C: Emerging Technol., 124 (2019), 1–18. https://doi.org/10.1016/j.trc.2020.102951 doi: 10.1016/j.trc.2020.102951
|
[17]
|
S. Halyal, R. H. Mulangi, M. M.Harsha, Forecasting public transit passenger demand: With neural networks using APC data, Case Stud. Transp. Policy, 10 (2022), 965–975. https://doi.org/10.1016/j.cstp.2022.03.011 doi: 10.1016/j.cstp.2022.03.011
|
[18]
|
Y. Feng, J. Hao, X. Sun, J. Li, Forecasting short-term tourism demand with a decomposition-ensemble strategy, Procedia Comput. Sci., 199 (2022), 879–884. https://doi.org/10.1016/j.procs.2022.01.110 doi: 10.1016/j.procs.2022.01.110
|
[19]
|
Y. Bai, Z. Sun, B. Zeng, J. Deng, C. Li, A multi-pattern deep fusion model for short-term bus passenger flow forecasting, Appl. Soft Comput., 58 (2017), 669–680. https://doi.org/10.1016/j.asoc.2017.05.011 doi: 10.1016/j.asoc.2017.05.011
|
[20]
|
G. Lin, A. Lin, D. Gu, Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient, Inf. Sci., 608 (2022), 517–531. https://doi.org/10.1016/j.ins.2022.06.090 doi: 10.1016/j.ins.2022.06.090
|
[21]
|
O. Giraka, K. V. Selvaraj, Short-term prediction of intersection turning volume using seasonal ARIMA model, Transp. Lett., 2019 (2019), 483–490. https://doi.org/10.1080/19427867.2019.1645476 doi: 10.1080/19427867.2019.1645476
|
[22]
|
A. Emami, M. Sarvi, S. A. Bagloee, Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors, Simul. Modell. Pract. Theory, 102 (2020), 1–17. https://doi.org/10.1016/j.simpat.2019.102025 doi: 10.1016/j.simpat.2019.102025
|
[23]
|
V. S. Kumar, Traffic flow prediction using Kalman filtering technique, Procedia Eng., 187 (2017), 582–587. https://doi.org/10.1016/j.proeng.2017.04.417 doi: 10.1016/j.proeng.2017.04.417
|
[24]
|
Z. Shi, N. Zhang, P. M. Schonfeld, J. Zhang, Short-term metro passenger flow forecasting using ensemble-chaos support vector regression, Transp. A: Transp. Sci., 16 (2019), 194–212. https://doi.org/10.1080/23249935.2019.1692956 doi: 10.1080/23249935.2019.1692956
|
[25]
|
Y. Sun, B. Leng, W. Guan, A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system, Neurocomputing, 166 (2015), 109–121. https://doi.org/10.1016/j.neucom.2015.03.085 doi: 10.1016/j.neucom.2015.03.085
|
[26]
|
Y. Liu, Z. Liu, R. Jia, DeepPF: a deep learning based architecture for metro passenger flow prediction, Transp. Res. Part C: Emerging Technol., 101 (2019), 18–34, https://doi.org/10.1016/j.trc.2019.01.027 doi: 10.1016/j.trc.2019.01.027
|
[27]
|
C. W. Tsai, C. H. Hsia, S. J. Yang, S. J. Liu, Z. Y. Fang, Optimizing hyperparameters of deep learning in predicting bus passengers based on simulated annealing, Appl. Soft Comput., 88 (2020), 18–34. https://doi.org/10.1016/j.asoc.2020.106068 doi: 10.1016/j.asoc.2020.106068
|
[28]
|
B. Sun, T. Sun, P. Jiao, Spatio-temporal segmented traffic flow prediction with ANPRS data based on improved XGBoost, J. Adv. Transp., 2021 (2021), 1–24. https://doi.org/10.1155/2021/5559562 doi: 10.1155/2021/5559562
|
[29]
|
J. J. Buckley, Y. Hayashi, Fuzzy neural networks: a survey, Fuzzy Sets Syst., 66 (1994), 1–13. https://doi.org/10.1016/0165-0114(94)90297-6 doi: 10.1016/0165-0114(94)90297-6
|
[30]
|
H. Peng, H. Wang, B. Du, M. Z. A. Bhuiyan, H. Ma, J. Liu, et al., Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting, Inf. Sci., 521 (2020), 277–290. https://doi.org/10.1016/j.ins.2020.01.043 doi: 10.1016/j.ins.2020.01.043
|
[31]
|
X. Yang, Q. Xue, X. Yang, H. Yin, Y. Qua, X. Li, et al., A novel prediction model for the inbound passenger flow of urban rail transit, Inf. Sci., 566 (2021), 347–363. https://doi.org/10.1016/j.ins.2021.02.036 doi: 10.1016/j.ins.2021.02.036
|
[32]
|
X. Fu, Y. Zuo, J. Wu, Y. Yuan, S. Wang, Short-term prediction of metro passenger flow with multi-source data: a neural network model fusing spatial and temporal features, Tunnelling Underground Space Technol., 124 (2022), 1–15. https://doi.org/10.1016/j.tust.2022.104486 doi: 10.1016/j.tust.2022.104486
|
[33]
|
L. Liu, C. R. Chen, A novel passenger flow prediction model using deep learning methods, Transp. Res. Part C: Emerging Technol., 84 (2017), 74–91. https://doi.org/10.1016/j.trc.2017.08.001 doi: 10.1016/j.trc.2017.08.001
|
[34]
|
D. Luo, D. Zhao, Q. Ke, X. You, L. Liu, H. Ma, Spatiotemporal hashing multigraph convolutional network for service-level passenger flow forecasting in bus transit systems, IEEE Internet Things J., 9 (2021), 6803–6815. https://doi.org/10.1109/JIOT.2021.3116241 doi: 10.1109/JIOT.2021.3116241
|
[35]
|
Y. Gao, Z. Guo, Y. Long, Z. Cui, X. Li, Passengers' travel behavior before and after the adjustment of regular bus collinear sections: a case study in the incipient phase of metro operation in Xiamen, Travel Behav. Soc., 26 (2022), 221–230. https://doi.org/10.1016/j.tbs.2021.10.006 doi: 10.1016/j.tbs.2021.10.006
|
[36]
|
Y. Yang, M. Cao, L. Cheng, K. Zhai, X. Zhao, J. D. Vos, Exploring the relationship between the COVID-19 pandemic and changes in travel behaviour: a qualitative study, Transp. Res. Interdiscip. Perspect., 11 (2021), 1–4. https://doi.org/10.1016/j.trip.2021.100450 doi: 10.1016/j.trip.2021.100450
|
[37]
|
S. Hu, Q. Liang, H. Qian, J. Weng, W. Zhou, Frequent-pattern growth algorithm based association rule mining method of public transport travel stability, Int. J. Sustainable Transp., 15 (2021), 879–892. https://doi.org/10.1080/15568318.2020.1827318 doi: 10.1080/15568318.2020.1827318
|
[38]
|
Z. Ma, J. Xing, M. Mesbah, L. Ferreira, Predicting short-term bus passenger demand using a pattern hybrid approach, Transp. Res. Part C: Emerging Technol., 39 (2014), 148–163. https://doi.org/10.1016/j.trc.2013.12.008 doi: 10.1016/j.trc.2013.12.008
|
[39]
|
N. Oort, T. Brands, E. Romph, Short-term prediction of ridership on public transport with smart card data, Transp. Res. Rec., 2535 (2015), 105–111. https://doi.org/10.3141/2535-12 doi: 10.3141/2535-12
|
[40]
|
I. Okutani, Y. J. Stephanedes, Dynamic prediction of traffic volume through Kalman filtering theory, Transp. Res. Part B: Methodol., 18 (1984), 1–11. https://doi.org/10.1016/0191-2615(84)90002-X doi: 10.1016/0191-2615(84)90002-X
|
[41]
|
W. Min, L. Wynter, Real-time road traffic prediction with spatio-temporal correlations, Transp. Res. Part C: Emerging Technol., 19 (2011), 606–616. https://doi.org/10.1016/j.trc.2010.10.002 doi: 10.1016/j.trc.2010.10.002
|
[42]
|
Y. K. Chan, S. T. Dillon, J. Singh, E. Chang, Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm, IEEE Trans. Intell. Transp. Syst., 13 (2012), 644–654. https://doi.org/10.1109/TITS.2011.2174051 doi: 10.1109/TITS.2011.2174051
|
[43]
|
R. Xue, J. D. Sun, S. Chen, Short-term bus passenger demand prediction based on time series model and interactive multiple model approach, Discrete Dyn. Nat. Soc., 2015 (2015), 1–11. https://doi.org/10.1155/2015/682390 doi: 10.1155/2015/682390
|
[44]
|
F. Toqué, M. Khouadjia, E. Come, M. Trepanier, L. Oukhellou, Short & long term forecasting of multimodal transport passenger flows with machine learning methods, in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017 (2017), 560–566. https://doi.org/10.1109/ITSC.2017.8317939
|
[45]
|
C. Li, X. Wang, Z. Cheng, Y. Bai, Forecasting bus passenger flows by using a clustering-based support vector regression approach, IEEE Access, 8 (2020), 19717–19725. https://doi.org/10.1109/ACCESS.2020.2967867 doi: 10.1109/ACCESS.2020.2967867
|
[46]
|
F. Jiao, L. Huang, Z. Gao, Multi-step time series forecasting of bus passenger flow with deep learning methods, in Liss 2020, 2021 (2021), 539–553. https://doi.org/10.1007/978-981-33-4359-7_38
|
[47]
|
W. Lv, Y. Lv, Q. Ouyang, Y. Ren, A bus passenger flow prediction model fused with point-of-interest data based on extreme gradient boosting, Appl. Sci., 12 (2022), 1–14. https://doi.org/10.3390/app12030940 doi: 10.3390/app12030940
|
[48]
|
Z. Gan, T. Feng, Y. Wu, M. Yang, H. Timmermans, Station-based average travel distance and its relationship with urban form and land use: an analysis of smart card data in Nanjing City, China, Transp. Policy, 79 (2019), 137–154. https://doi.org/10.1016/j.tranpol.2019.05.003 doi: 10.1016/j.tranpol.2019.05.003
|
[49]
|
J. Yong, L. Zheng, X. Mao, X. Tang, A. Gao, W. Liu, Mining metro commuting mobility patterns using massive smart card data, Physica A, 584 (2021), 1–16. https://doi.org/10.1016/j.physa.2021.126351 doi: 10.1016/j.physa.2021.126351
|
[50]
|
O. Egu, P. Bonnel, Investigating day-to-day variability of transit usage on a multimonth scale with smart card data. A case study in Lyon, Travel Behav. Soc., 19 (2020), 112–123. https://doi.org/10.1016/j.tbs.2019.12.003 doi: 10.1016/j.tbs.2019.12.003
|
[51]
|
E. F. Grubbs, Sample criteria for testing outlying observations, Ann. Math. Stat., 21 (1950), 27–58. https://www.jstor.org/stable/2236553
|
[52]
|
C. S. Möller-Levet, F. Klawonn, H. K. Cho, O. Wolkenhauer, Fuzzy clustering of short time-series and unevenly distributed sampling points, Adv. Intell. Data Anal., 2810 (2003), 330–340 https://doi.org/10.1007/978-3-540-45231-7_31 doi: 10.1007/978-3-540-45231-7_31
|
[53]
|
J. R. Hodrick, C. E. Prescott, Postwar US business cycles: an empirical investigation, J. Money Credit Banking, 29 (1997), 1–16. https://doi.org/10.2307/2953682 doi: 10.2307/2953682
|
[54]
|
H. Zhai, L. Cui, Y. Nie, X. Xu, W. Zhang, A comprehensive comparative analysis of the basic theory of the short term bus passenger flow prediction, Symmetry, 10 (2018), 1–23. https://doi.org/10.3390/sym10090369 doi: 10.3390/sym10090369
|
[55]
|
L. hang, Q. Liu, W. Yang, N. Wei, D. Dong, An improved k-nearest neighbor model for short-term traffic flow prediction, Procedia - Social Behav. Sci., 96 (2013), 653–662. https://doi.org/10.1016/j.sbspro.2013.08.076 doi: 10.1016/j.sbspro.2013.08.076
|
[56]
|
G. Cheng, S. Zhao, J. Li, The effects of latent attitudinal variables and sociodemographic differences on travel behavior in two small, underdeveloped cities in China, Sustainability, 11 (2019), 1–17. https://doi.org/10.3390/su11051306 doi: 10.3390/su11051306
|
[57]
|
G. Cheng, S. Jiang, T. Zhang, Fuzzy multidimensional assessment approach of travel deprivation in small underdeveloped cities: case study of Lhasa, China, J. Adv. Transp., 2021 (2021), 1–12. https://doi.org/10.1155/2021/8851449 doi: 10.1155/2021/8851449
|
[58]
|
G. Cheng, L. Guo, T. Zhang, Spatial equity assessment of bus travel behavior for pilgrimage: evidence from Lhasa, Tibet, China, Sustainability, 14 (2022), 1–15. https://doi.org/10.3390/su141710486 doi: 10.3390/su141710486
|
[59]
|
S. Liu, T. Yamamoto, E. Yao, T. Nakamura, Examining public transport usage by older adults with smart card data: a longitudinal study in Japan, J. Transp. Geogr., 93 (2021), 1–12. https://doi.org/10.1016/j.jtrangeo.2021.103046 doi: 10.1016/j.jtrangeo.2021.103046
|
[60]
|
A. Barnett, E. Cerin, C. M. Cheung, H. C. Sit, J. D. Macfarlane, M. W. Chan, Reliability and validity of the IPAQ-L in a sample of Hong Kong urban older adults: does neighborhood of residence matter, J Aging Phys. Act., 20 (2012), 402–420. https://doi.org/10.1123/japa.20.4.402 doi: 10.1123/japa.20.4.402
|
[61]
|
H. Wang, L. Fu, Y. Zhou, H. Li, Modelling of the fuel consumption for passenger cars regarding driving characteristics, Transp. Res. Part D: Transp. Environ., 13 (2008), 479–482. https://doi.org/10.1016/j.trd.2008.09.002 doi: 10.1016/j.trd.2008.09.002
|
[62]
|
R. Mackett, Improving accessibility for older people–Investing in a valuable asset, J. Transp. Health, 2 (2015), 5–13. https://doi.org/10.1016/j.jth.2014.10.004 doi: 10.1016/j.jth.2014.10.004
|