This paper was concerned with the inhomogeneous optical fiber model, which was governed by a nonlinear Schrödinger equation with variable coefficients. By spectral analysis for Lax pair of the equation, a corresponding Riemann-Hilbert problem was formulated. By solving the Riemann-Hilbert problem with simple poles, the formula of multi-soliton solutions was derived. Finally, we considered a soliton control system and obtained the one-soliton and two-soliton.
Citation: Jinfang Li, Chunjiang Wang, Li Zhang, Jian Zhang. Multi-solitons in the model of an inhomogeneous optical fiber[J]. AIMS Mathematics, 2024, 9(12): 35645-35654. doi: 10.3934/math.20241691
This paper was concerned with the inhomogeneous optical fiber model, which was governed by a nonlinear Schrödinger equation with variable coefficients. By spectral analysis for Lax pair of the equation, a corresponding Riemann-Hilbert problem was formulated. By solving the Riemann-Hilbert problem with simple poles, the formula of multi-soliton solutions was derived. Finally, we considered a soliton control system and obtained the one-soliton and two-soliton.
[1] | Y. Kivshar, G. Agrawal, Optical solitons: From fibers to photonic crystals, Academic Press, 2003. |
[2] | J. Yang, Nonlinear waves in integrable and nonintegrable systems, SIAM, 2010. |
[3] | V. E. Zakharov, A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34 (1972), 62–69. |
[4] | M. Pichler, G. Biondini, On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles, IMA J. Appl. Math., 82 (2017), 131–151. https://doi.org/10.1093/imamat/hxw009 doi: 10.1093/imamat/hxw009 |
[5] | Y. Zhang, X. Tao, S. Xu, The bound-state soliton solutions of the complex modified KdV equation, Inverse Probl., 36 (2020), 065003. https://doi.org/10.1088/1361-6420/ab6d59 doi: 10.1088/1361-6420/ab6d59 |
[6] | G. Biondini, G. Kovačič, Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 55 (2014), 031506. https://doi.org/10.1063/1.4868483 doi: 10.1063/1.4868483 |
[7] | C. Wang, J. Zhang, Riemann-Hilbert approach and $N$-soliton solutions of the two-component Kundu-Eckhaus equation, Theor. Math. Phys., 212 (2022), 1222–1236. https://doi.org/10.1134/S0040577922090057 doi: 10.1134/S0040577922090057 |
[8] | B. A. Malomed, Soliton management in periodic systems, New York: Springer, 2006. https://doi.org/10.1007/0-387-29334-5 |
[9] | A. Hasegawa, Quasi-soliton for ultra-high speed communications, Physica D, 123 (1998), 267–270. https://doi.org/10.1016/S0167-2789(98)00126-2 doi: 10.1016/S0167-2789(98)00126-2 |
[10] | T. I. Lakoba, D. J. Kaup, Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers, Phys. Rev. E, 58 (1998), 6728–6741. |
[11] | V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, A single-mode fiber with chromatic dispersion varying along the length, J. Lightwave Technol., 9 (1991), 561–566. https://doi.org/10.1109/50.79530 doi: 10.1109/50.79530 |
[12] | V. N. Serkin, A. Hasegawa, Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion, IEEE J. Sel. Top. Quant., 8 (2002), 418–431. https://doi.org/10.1109/JSTQE.2002.1016344 doi: 10.1109/JSTQE.2002.1016344 |
[13] | V. N. Serkin, T. L. Belyaeva, High-energy optical Schrödinger solitons, JETP Lett., 74 (2001), 573-577. https://doi.org/10.1134/1.1455063 doi: 10.1134/1.1455063 |
[14] | R. Hao, L. Li, Z. Li, R. Yang, G. Zhou, A new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficients, Opt. Commun., 245 (2005), 383–390. https://doi.org/10.1016/j.optcom.2004.10.001 doi: 10.1016/j.optcom.2004.10.001 |
[15] | C. Dai, Y. Wang, J. Chen, Analytic investigation on the similariton transmission control in the dispersion decreasing fiber, Opt. Commun., 248 (2011), 3440–3444. https://doi.org/10.1016/j.optcom.2011.03.033 doi: 10.1016/j.optcom.2011.03.033 |
[16] | Y. Kubota, T. Odagaki, Numerical study of soliton scattering in inhomogeneous optical fibers, Phys. Rev. E, 68 (2003), 026603. https://doi.org/10.1103/PhysRevE.68.026603 doi: 10.1103/PhysRevE.68.026603 |
[17] | Y. Kodama, Optical solitons in a monomode fiber, J. Stat. Phys., 39 (1985), 597–614. https://doi.org/10.1007/BF01008354 doi: 10.1007/BF01008354 |
[18] | N. Joshi, Painlevé property of general variable-coefficient versions of the Korteweg-de Vries and nonlinear Schrödinger equations, Phys. Lett. A, 125 (1987), 456–460. https://doi.org/10.1016/0375-9601(87)90184-8 doi: 10.1016/0375-9601(87)90184-8 |
[19] | V. N. Serkin, A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., 85 (2000), 4502. https://doi.org/10.1103/PhysRevLett.85.4502 doi: 10.1103/PhysRevLett.85.4502 |
[20] | R. Hao, L. Li, Z. Li, W. Xue, G. Zhou, A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödinger equation with variable coefficients, Opt. Commun., 236 (2004), 79–86. https://doi.org/10.1016/j.optcom.2004.03.005 doi: 10.1016/j.optcom.2004.03.005 |
[21] | B. Tian, Y. T. Gao, Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers, Phys. Lett. A, 342 (2005), 228–236. https://doi.org/10.1016/j.physleta.2005.05.041 doi: 10.1016/j.physleta.2005.05.041 |
[22] | X. Lü, H. W. Zhu, X. H. Meng, Z. C. Yang, B. Tian, Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications, J. Math. Anal. Appl., 336 (2007), 1305–1315. https://doi.org/10.1016/j.jmaa.2007.03.017 doi: 10.1016/j.jmaa.2007.03.017 |
[23] | X. Lü, H. W. Zhu, Z. Z. Yao, X. H. Meng, C. Zhang, C. Y. Zhang, et al., Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications, Ann. Phys., 323 (2008), 1947–1955. https://doi.org/10.1016/j.aop.2007.10.007 doi: 10.1016/j.aop.2007.10.007 |
[24] | Y. Sun, B. Tian, L. Liu, X. Y. Wu, Rogue waves for a generalized nonlinear Schrödinger equation with distributed coefficients in a monomode optical fiber, Chao Soliton. Fract., 107 (2018), 266–274. https://doi.org/10.1016/j.chaos.2017.12.012 doi: 10.1016/j.chaos.2017.12.012 |
[25] | P. Deift, Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, 2000. |
[26] | L. L. Wen, E. G. Fan, Y. Chen, Multiple-high-order pole solutions for the NLS equation with quartic terms, Appl. Math. Lett., 130 (2022), 108008. https://doi.org/10.1016/j.aml.2022.108008 doi: 10.1016/j.aml.2022.108008 |
[27] | Y. Yang, E. Fan, Riemann-Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions, Physica D, 417 (2021), 132811. https://doi.org/10.1016/j.physd.2020.132811 doi: 10.1016/j.physd.2020.132811 |
[28] | W. Weng, Z. Yan, Inverse scattering and $N$-triple-pole soliton and breather solutions of the focusing nonlinear Schröinger hierarchy with nonzero boundary conditions, Phys. Lett. A, 407 (2021), 127472. https://doi.org/10.1016/j.physleta.2021.127472 doi: 10.1016/j.physleta.2021.127472 |
[29] | X. Geng, J. Wu, Riemann-Hilbert approach and $N$-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion, 60 (2016), 62–72. https://doi.org/10.1016/j.wavemoti.2015.09.003 doi: 10.1016/j.wavemoti.2015.09.003 |
[30] | C. Wang, J. Zhang, Double-pole solutions in the modified nonlinear Schrödinger equation, Wave Motion, 118 (2023), 103102. https://doi.org/10.1016/j.wavemoti.2022.103102 doi: 10.1016/j.wavemoti.2022.103102 |